You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 7 Next »

Unable to render {include} The included page could not be found.

Pre-Analysis & Start-Up

In the Pre-Analysis & Start-Up step, we'll review the following:

  • Mathematical Model: We will look at the governing equations, boundary conditions, initial field velocity function of the jet as well as the formula for calculating Stokes number in this case.
  • Expected Results: We will discuss the expected results from this simulation and compare the numerical results with the expected results.

Mathematical Model 

Governing Equations:

In almost any fluid dynamics problem, the most important governing equation has to be the Navier-Stokes equation and continuity equation. The two equations govern the fluid flow. Here we will list the Navier-Stokes equations but we will not go into further details.

Continuity Equation:

Unknown macro: {latex}

\begin

Unknown macro: {align*}

\frac

Unknown macro: {partial rho}
Unknown macro: {partial t}

+ \nabla \cdot (\rho \textbf

Unknown macro: {v} )=0
\Rightarrow \nabla \cdot \textbf

= 0
\end

Navier-Stokes Equation:

Unknown macro: {latex}

\begin

Unknown macro: {eqnarray*}

\rho (\frac{d \textbf{v}}

Unknown macro: {dt}

+\textbf

Unknown macro: {v} \cdot \nabla \textbf

)=- \nabla p + \mu \nabla ^2 \textbf

Unknown macro: {v}

+ \textbf

Unknown macro: {f}

\end

In this case, however, we have discrete particles in the flow. Since we are using a one-way coupled scheme, the fluid imposes a force on the particles, but not vice versa. By using the particle force balance equation listed below, the particle movement can be calculated by integrating the acceleration term.

Particle Force Balance:

Unknown macro: {latex}

\begin

Unknown macro: {align*}

&\frac

Unknown macro: {d u_p}
Unknown macro: {dt}

= F_D(\overrightarrow

Unknown macro: {u}

-\overrightarrow

Unknown macro: {u_p}

)+\frac{\overrightarrow

Unknown macro: {g}

(\rho_p-\rho)}

Unknown macro: {rho_p}

+\overrightarrow

Unknown macro: {F}


\end

Unknown macro: {latex}

$\overrightarrow

Unknown macro: {F}

$

 is an additional acceleration (force per unit particle mass) term. 
Unknown macro: {latex}

$F_D(\overrightarrow

Unknown macro: {u}

-\overrightarrow

Unknown macro: {u_p}

)$

 is the drag force per unit particle mass.

 

Unknown macro: {latex} $F_D$
 can be calculated using the formula below:

Unknown macro: {latex}

\begin

Unknown macro: {align*}

F_D = \frac

Unknown macro: {18mu}
Unknown macro: {rho_d d_p ^2}

\frac

Unknown macro: {C_D Re}
Unknown macro: {24}

\end

Here, 

Unknown macro: {latex}

$\overrightarrow

Unknown macro: {u}

$

 is the fluid phase velocity, 
Unknown macro: {latex}

$\overrightarrow

Unknown macro: {u_p}

$

 is the particle velocity, 
Unknown macro: {latex} $\mu$
 is the molecular viscosity of the fluid, 
Unknown macro: {latex} $\rho$
 is the fluid density, 
Unknown macro: {latex} $\rho_p$
 is the density of the particle, and 
Unknown macro: {latex} $d_p$
 is the particle diameter. Re is the relative Reynolds, number, which is defined as 

Unknown macro: {latex}

\begin

Unknown macro: {eqnarray*}

Re \equiv \frac{\rho d_p |\overrightarrow

Unknown macro: {u_p}

-\overrightarrow

Unknown macro: {u}

|}

Unknown macro: {mu}

\end

Initial Field Velocity Function

The initial field setup of a jet is essentially two shear layers. The two shear layers are symmetrical to the centerline. A hyperbolic tangent velocity function is used to initialize velocity field of a shear layer. The hyperbolic tangent velocity functions are preferred over discontinuous piecewise functions because hyperbolic tangent functions are more physical. The initial field velocity function for the entire jet is given below:

Unknown macro: {latex}

[
U_

Unknown macro: {initial}

=
\left{
\begin

Unknown macro: {array}
Unknown macro: {lr}

tanh(32y-8) & : 0 \leq x \leq 0.5
-tanh(32y-24) & : 0.5n < n \leq 1
\end

\right.
]

     

Unknown macro: {latex}

\begin

Unknown macro: {align*}

&V_

Unknown macro: {initial}

= 0
&\text


&tanh=\frac{e^x-e^{-x}}{e^x+e^{-x}}
\end

The function is plotted below (x velocity versus y) using simple MATLAB codes:

Stokes Number

The Stokes number is a dimensionless number that corresponds to the behavior of particles suspended in a fluid flow. The Stokes number is defined as below:

Unknown macro: {latex}

\begin

Unknown macro: {eqnarray*}

Stk = \frac

Unknown macro: {tau U_0}
Unknown macro: {d_c}

(1)
\end

Unknown macro: {latex} $\tau$
 is the relaxation time of the particle, 
Unknown macro: {latex} $U_0$
 is the fluid velocity well away from the particle, and 
Unknown macro: {latex} $d_c$
 is the characteristic length scale of the obstacle, in this case it is the diameter of the particle.

Thus: 

Unknown macro: {latex} $d_c = d_p = d (2)$

In the case of Stokes flow, where the Reynolds number is sufficiently small the relaxation time can be expressed using the equation below:

Unknown macro: {latex}

\begin

Unknown macro: {eqnarray*}

\tau = \frac

Unknown macro: {rho_d d_d ^2}
Unknown macro: {18 mu_g}

(3)
\end

Plug (2) and (3) into (1), we get the formula for calculating the Stokes Number in our case below:

Unknown macro: {latex}

\begin

Unknown macro: {eqnarray*}

\boxed{Stk = \frac

Unknown macro: {rho_d cdot d U_0}

{18\mu_g}}
\end

Expected Results

Under Construction


Go to Step 2: Geometry

Go to all FLUENT Learning Modules

  • No labels