Include Page | ||||
---|---|---|---|---|
|
Include Page | ||||
---|---|---|---|---|
|
Pre-Analysis & Start-Up
Pre-Analysis
There are three difference theories for finding the solution for the bending of a curved beam. There is elasticity theory, where
Latex |
---|
Wiki Markup |
{latex} $$ \sigma_r = (\frac{4M}{tb^2N}) [( 1 - \frac{a^2}{b^2}\ln(\frac{r}{a}) - (1 - \frac{a^2}{b^2})\ln(\frac{b}{a})] $$ and $$ \sigma_\theta = (\frac{4M}{tb^2N}) [(1 - \frac{a^2}{b^2})(1+\ln(\frac{r}{a})) - (1 + \frac{a^2}{r^2})\ln(\frac{b}{a})] $$ where $$ N = (1 - \frac{a^2}{b^2})^2 - 4(\frac{a^2}{b^2})\ln^2(\frac{b}{a}) $$ {latex} |
There is Winkler Bach Theory, where
Latex |
---|
Wiki Markup |
{latex} $$ \sigma_x = \frac{M}{AR} [ 1 + \frac{y}{Z(R + y)}] $$ where $$ Z = -1 + \frac{R}{h}\ln[(R+\frac{h}{2})/(R - \frac{h}{2})] $$ {latex} |
And there is the straight beam theory, where
Latex |
---|
Wiki Markup |
{latex} $$ \sigma_x = \frac{My}{I} $$ {latex} |
ANSYS Simulation
Now, let's load the problem into ANSYS and see how a computer simulation will compare. First, start by downloading the files here
The zip file should contain the following contents:
...