You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 25 Next »

UNDER CONSTRUCTION

Author: Daniel Kantor and Andrew Einstein, Cornell University

Problem Specification
1. Create Geometry in GAMBIT
2. Mesh Geometry in GAMBIT
3. Specify Boundary Types in GAMBIT
4. Set Up Problem in FLUENT
5. Solve!
6. Analyze Results
7. Refine Mesh
Problem 1

Problem Specification

The purpose of this tutorial is to illustrate the setup and solution of a turbulent flow past a sphere. Flow past a sphere is one of the classical problems of fluid mechanics. For this problem, we will be looking at Reynolds number of 1.14E6. 

Unknown macro: {latex}

\large
$$

Unknown macro: {Re}

=

Unknown macro: {rho VD over mu}

$$

We know D = 6. To obtain Re = 1.14E6, we can arbitrarily set ρ, V and μ, but will use the standard values in Fluent. For our case, let's set ρ = 1.225 kg/m 3 , V = 2.7754 m/s and μ = 1.7894E-05 kg/ms.

Preliminary Analysis

For Re = 1.14E6, we are looking at turbulent flow. What will be the velocity profile of this flow? What will be the drag coefficient of the sphere? What will be the pressure coefficient around sphere? How will the streamlines around sphere look?

Let's start the modeling in our quest to find out the answer!

We'll create the geometry and mesh in GAMBIT which is the preprocessor for FLUENT, and then read the mesh into FLUENT and solve for the flow solution.
Go to Step 1: Create Geometry in GAMBIT

See and rate the complete Learning Module

Go to all FLUENT Learning Modules

  • No labels