You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 1 Next »




Unknown macro: {latex}

\large

$$
\eqalign{
  & \sum

Unknown macro: {F = 0}

   \cr
  & F_b  + F_d  - mg\sin (\theta ) = 0{\rm{   (I)}}  \cr
  &  - mg\sin \theta  + \rho _w gV_

Unknown macro: {proj}

\sin \theta  + \rho _w C_D A_

V^2 } \over 2}{\rm{  (II)  \cr
  & {\rm{Solving (II) for V }}...  \cr
  & {{V^2 } \over 2}\rho _w C_D A_

Unknown macro: {proj}

  = \rho _p V_

g\sin \theta  - \rho _w gV_

Unknown macro: {proj}

\sin \theta   \cr
  & V^2  = {2 \over {\rho _w C_D A_

}}(\rho _p V_

Unknown macro: {proj}

g\sin \theta  - \rho _w gV_

\sin \theta )  \cr
  & V^2  = {{2g\sin \theta V_

Unknown macro: {proj}

} \over {\rho _w C_D A_

}}(\rho _p  - \rho _w )  \cr
  & {\rm{This model initially assumes that the floc particles can be approximated as spheres}}.  \cr
  & {{V_

Unknown macro: {proj}

} \over {A_

}} = {{\pi d_p ^3 } \over 6 \over {{

Unknown macro: {pi d_p ^2 }

\over 4}}} =

Unknown macro: {2 over 3}

d_p   \cr
  & {\rm{Assuming that the flow in the tube settlers is creeping, we can approximate the drag coefficient as 24/Re}}{\rm{. Thus:}}  \cr
  & V^2  = {{2g\sin \theta } \over {{

Unknown macro: {24}

\over {{\mathop

Unknown macro: {rm Re}

\nolimits} }}}}

d_p {{(\rho _p  - \rho _w )} \over {\rho _w }}  \cr
  & V = \sqrt {{4 \over {72}}g\sin (\theta )d_p {\mathop

Unknown macro: {rm Re}

\nolimits} {{(\rho _p  - \rho _w )} \over

Unknown macro: {rho _w }

}}   \cr
  & {\rm{At this velocity, a floc shouldn't move}}{\rm{.  We should call this something like the critical velocity, since any velocity value (at the edge of the floc) larger than this value will produce floc roll - up}}{\rm{.}}  \cr
  &   \cr
  & {\rm{Analysis of the velocity gradient}}  \cr
  &

Unknown macro: {1 over r}

{\partial  \over {\partial r}}(r{{\partial v_z } \over {\partial r}}) =

Unknown macro: {1 over mu }

(\partial P} \over {\partial z)r  \cr
  & {\rm{After integration }}  \cr
  & r{{\partial v_z } \over {\partial r}} = {1 \over {2\mu }}(\partial P} \over {\partial z)r^2  + c_1   \cr
  & {\rm{c}}{\rm{1}} {\rm{ = 0, since v}}{\rm{z}} {\rm{ must be finite at the center of the tube}}{\rm{.  Dividing through by r -  - }}  \cr
  & \partial v_z } \over {\partial r = {1 \over {2\mu }}(\partial P} \over {\partial z)r  \cr
  & \partial P} \over {\partial z = {{\Delta P} \over L}  \cr
  & V_

Unknown macro: {av}

  = R^2 \Delta P} \over {8\mu L = {Q \over {\pi R^2 }}  \cr
  & {{\Delta P} \over L} = {{Q8\mu } \over {\pi R^4 }}  \cr
  & \partial v_z } \over {\partial r = {1 \over {2\mu }}{{Q8\mu } \over {\pi R^4 }}r  \cr
  & \partial v_z } \over {\partial r = {{4Q} \over {\pi R^4 }}r  \cr
  & {\rm{Integrate to obtain an expression for the velocity profile with respect to z}}{\rm{.}}  \cr
  & V_z (r) = {{2Q} \over {\pi R^4 }}r^2  + c_1   \cr
  & {\rm{Now apply the no - slip condition; }}V_z  = 0{\rm{ when r = R}}  \cr
  & c_1  = {{ - 2Q} \over {\pi R^2 }}  \cr
  & V_z (r) = {{2Q} \over {\pi R^2 }}[(

Unknown macro: {r over R}

)^2  - 1] = {{2Q} \over {A_

Unknown macro: {tube}

}}[(

)^2  - 1]  \cr
  & {\rm{Finally:}}  \cr
  & V_z (r) = 2V_

[(

Unknown macro: {r over R}

)^2  - 1]  \cr
  & {\rm{We can evaluate the velocity at the failure point, which for this approximtion is equal to (R}}_{{\rm

Unknown macro: {tube}

}} {\rm{ -  d}}_{\rm{p}} ) = P_f   \cr
  & V_z ({\rm{R}}_{{\rm

}} {\rm{ -  d}}{\rm{p}} ) = 2V

Unknown macro: {av}

[({\rm{R_{{\rm

Unknown macro: {tube}

}} {\rm{ -  d}}_{\rm{p}} } \over R})^2  - 1]  \cr
  & V_z (P_f ) = 2V_

[({\rm{R_{{\rm

Unknown macro: {tube}

}}  - d_p } \over R})^2 ] = V_f   \cr
  & V_f  = \sqrt {{4 \over {72}}g\sin (\theta )d_p {\mathop

\nolimits} {{(\rho _p  - \rho _w )} \over

Unknown macro: {rho _w }

}}   \cr
  & {\rm{When the velocity at the failure point exceeds the critical velocity, flocs will roll up}}{\rm{. }}{\rm{This suggests an inequality}}{\rm{.}}  \cr
  & 2V_

Unknown macro: {av}

[({\rm{R_{{\rm

Unknown macro: {tube}

}}  - d_p } \over R})^2 ] > \sqrt {{4 \over {72}}g\sin (\theta )d_p {\mathop

Unknown macro: {rm Re}

\nolimits} {{(\rho _p  - \rho _w )} \over

}}   \cr
  & {\rm{If we solve this expression for }}d_p {\rm{ we can obtain a function to evaluate the critical velocity as a function of the floc diameter}}{\rm{.  }}  \cr
  & {\rm{The function is cubic and has the form:}}  \cr
  & {\rm{(}}d_p ) = c_1 d_p ^3  - c_2 d_p ^2  + c_3 d_p  - \omega   \cr
  & {\rm{(}}d_p ) = (

Unknown macro: {1 over R}

)d_p ^3  - 4d_p ^2  + (4R^2  +

- 2)d_p  - g\sin (\theta ){\mathop

Unknown macro: {rm Re}

\nolimits} {{(\rho _p  - \rho _w )} \over {\rho _w }}{{A_

Unknown macro: {tube}

^2 } \over {Q^2 }}  \cr
  & {\rm{Theoretically, when:}}  \cr
  &   \cr
  & {\rm{                                  }}{\rm{(}}d_p ) < 0,{\rm{ no roll - up occurs}}  \cr
  & {\rm{                                  }}{\rm{(}}d_p ) = 0,{\rm{ critical diameter}}  \cr
  & {\rm{                                  }}{\rm{(}}d_p ) > 0,{\rm{ roll - up occurs}}{\rm{.}} \cr}
$$

  • No labels