You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 4 Next »

Parameter Formulation – Characterize Collision Potential

Introduction

The formulation of parameters

Unknown macro: {latex}

\large$\theta \varepsilon ^

Unknown macro: {1/3}

$

,

Unknown macro: {latex}

\large$K_

Unknown macro: {baffle}

$

,

Unknown macro: {latex}

\large$\Pi _

Unknown macro: {cell}

$

and are described below, for characterizing flocculation potential using numerical solutions from CFD simulations. Note that this is a work in progress, so the notation of variables and interpretation of equations still need to be further clarified.

Unknown macro: {latex}

\large$\theta \varepsilon ^

Unknown macro: {1/3}

$

:
Calculating a flow weighted average of

Unknown macro: {latex}

\large$\theta \varepsilon ^

Unknown macro: {1/3}

$

:

Unknown macro: {latex}

\large${\theta _{baffle}}{\varepsilon ^{{\raise0.7ex\hbox{$1$} !\mathord{\left/
{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
!\lower0.7ex\hbox{$3$}}}} =

Unknown macro: {1 over Q}

\sum\limits_

Unknown macro: {fe}

\theta _{fe\varepsilon _

^{{\raise0.7ex\hbox{$1$} !\mathord{\left/
{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
!\lower0.7ex\hbox{$3$}}}{Q_

Unknown macro: {fe}

}}$

, where

Unknown macro: {latex}

\large$${\theta _{fe}} = {{{\forall _

Unknown macro: {fe}

}} \over Q_{fe}} = \Delta x\Delta y} \over {\left| {{v_x}\Delta y} \right| + \left| {{v_y}\Delta x} \right|$$

,
Thus

Unknown macro: {latex}

\large$${\theta _{baffle}}{\varepsilon ^{{\raise0.7ex\hbox{$1$} !\mathord{\left/
{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}!\lower0.7ex\hbox{$3$}}}} =

Unknown macro: {1 over Q}

\sum\limits_

Unknown macro: {fe}

\forall _{fe\varepsilon _

^{{\raise0.7ex\hbox{$1$} !\mathord{\left/
{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
!\lower0.7ex\hbox{$3$}}}} $$

Unknown macro: {latex}

\large
${K_{baffle}}$

:

Unknown macro: {latex}

\large
$${\varepsilon _{fe}} = g{h_l \over \theta _{fe}}$$


Unknown macro: {latex}

\large
$$

Unknown macro: {h_e}

= {K_{baffle}}{V^2 \over {2g}}$$


Unknown macro: {latex}

\large
$$

Unknown macro: {h_l}

= {\varepsilon _{fe{\theta _

Unknown macro: {fe}

}} \over g}$$


Unknown macro: {latex}

\large
$${K_{baffle}} =

Unknown macro: {h_e}

2g} \over {{V^2}$$


where

Unknown macro: {latex}

\large
$${\theta _{fe}} = {{{\forall _

Unknown macro: {fe}

}} \over Q_{fe}} = \Delta x\Delta y} \over {\left| {{v_x}\Delta y} \right| + \left| {{v_y}\Delta x} \right|$$


Unknown macro: {latex}

\large
$${K_{baffle}} =

Unknown macro: {1 over Q}

\sum\limits_

Unknown macro: {fe}

{{\varepsilon _{fe{\theta _

}} \over g}2g} \over {{V^2}{Q_

Unknown macro: {fe}

}} $$


Unknown macro: {latex}

\large
$${K_{baffle}} = {2 \over {Q

Unknown macro: {V^2}

}}\sum\limits_

Unknown macro: {fe}

\varepsilon _{fe{\forall _

}} $$


Unknown macro: {latex}

\large
$${K_{baffle}} = {2 \over {bw

Unknown macro: {V^3}

}}\sum\limits_

Unknown macro: {fe}

\varepsilon _{fe{\forall _

}} $$



where

Unknown macro: {latex}

\large
$$Q = Vbw$$

Unknown macro: {latex}

\large
${\Pi _{cell}}$

:

Unknown macro: {latex}

\large
$${\varepsilon {cell}} = {K{baffle{V^3}} \over {2{\Pi _{cell}}b}}$$

, plug in

Unknown macro: {latex}

\large
${K_{baffle}}$

and simplify:

Unknown macro: {latex}

\large
$${\Pi {cell}} = {1 \over b^2}w{{{{\left( {\sum\limits

Unknown macro: {fe}

\forall _{fe\varepsilon _

^{{\raise0.7ex\hbox{$1$} !\mathord{\left/
{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
!\lower0.7ex\hbox{$3$}}}} } \right)}^{{\raise0.7ex\hbox{$3$} !\mathord{\left/
{\vphantom {3 2}}\right.\kern-\nulldelimiterspace}
!\lower0.7ex\hbox{$2$}}}}} \over {{{\left( {\sum\limits_

Unknown macro: {fe}

\forall _{fe{\varepsilon _

}} } \right)}^{{\raise0.7ex\hbox{$1$} !\mathord{\left/
{\vphantom {1 2}}\right.\kern-\nulldelimiterspace}
!\lower0.7ex\hbox{$2$}}}}}}$$

Unknown macro: {latex}

\large
$G\theta $

:

Unknown macro: {latex}

\large
$$G{\theta _{baffle}} =

Unknown macro: {1 over Q}

\sum\limits_

Unknown macro: {fe}

G_{fe{\theta {fe}}{Q

}} $$


Unknown macro: {latex}

\large
$${\theta _{fe}} = {{{\forall _

Unknown macro: {fe}

}} \over Q_{fe}} = \Delta x\Delta y} \over {\left| {{v_x}\Delta y} \right| + \left| {{v_y}\Delta x} \right|$$


Unknown macro: {latex}

\large
$$G{\theta _{baffle}} =

Unknown macro: {1 over Q}

\sum\limits_

Unknown macro: {fe}

G_{fe{\forall _

}} $$


Unknown macro: {latex}

\large
$${G_{fe}} \propto \sqrt {{{{\varepsilon _

Unknown macro: {fe}

}} \over \nu }} $$


Unknown macro: {latex}

\large
$$G{\theta _{baffle}} =

Unknown macro: {1 over Q}

\sum\limits_

Unknown macro: {fe}

{\sqrt {{{{\varepsilon _

}} \over \nu }} {\forall _

Unknown macro: {fe}

}} $$


Unknown macro: {latex}

\large
$$G{\theta {baffle}} = {1 \over {Q\sqrt \nu }}\sum\limits

Unknown macro: {fe}

{\varepsilon _

^{{\raise0.7ex\hbox{$1$} !\mathord{\left/
{\vphantom {1 2}}\right.\kern-\nulldelimiterspace}
!\lower0.7ex\hbox{$2$}}}{\forall _

Unknown macro: {fe}

}} $$

All parameters are calculated from summing over all nodes (finite element)

Unknown macro: {latex}

\large
$$\sum \forall _{fe\varepsilon _

Unknown macro: {fe}

^{{\raise0.7ex\hbox{$1$} !\mathord{\left/
{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
!\lower0.7ex\hbox{$3$}}}} $$

,

Unknown macro: {latex}

\large
$$\sum \forall _{fe\varepsilon _

Unknown macro: {fe}

^{{\raise0.7ex\hbox{$1$} !\mathord{\left/
{\vphantom {1 2}}\right.\kern-\nulldelimiterspace}
!\lower0.7ex\hbox{$2$}}}} $$

,

Unknown macro: {latex}

\large
$$\sum \forall _{fe{\varepsilon _

Unknown macro: {fe}

}} $$

, which can be calculated using the following UDF script:performance.c.

  • No labels