Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

...

A particle laden flow is a multiphase flow where one phase is the fluid and the other is dispersed particles. Governing equations for both phases are implemented in Fluent. To run a meaningful simulation, a review of the theory is necessary.

Fluid Phase:

...

In

...

the

...

simulations

...

considered

...

for

...

this

...

tutorial,

...

the

...

fluid

...

flow

...

is

...

a

...

2D

...

perturbed

...

periodic

...

double

...

shear

...

layer

...

as

...

described

...

in

...

the

...

first

...

section.

...

The

...

geometry

...

is

...

Lx

...

=

...

59.15m,

...

Ly

...

=

...

59.15m,

...

and

...

the

...

mesh

...

size

...

is

...

chosen

...

as

Wiki Markup
{latex}{\large$$\Delta x = L_x / n_x$$}{latex}

...

in

...

order

...

to

...

resolve

...

the

...

smallest

...

vorticies.

...

As

...

a

...

rule

...

of

...

thumb. One

...

typically

...

needs

...

about

...

20

...

grid

...

points

...

across

...

the

...

shear

...

layers,

...

where

...

the

...

vorticies

...

are

...

going

...

to develop.

...

The

...

boundary

...

conditions

...

are

...

periodic

...

in

...

the

...

x

...

and

...

y

...

 directions.

...

The

...

fluid

...

phase

...

satisfies the

...

Navier-Stokes

...

Equations:

...


-Momentum Equations

Wiki Markup
 Equations
{latex}
{\large 
\begin{eqnarray*} 
\rho_f (\frac{d \mathbf{u}_f}{dt}+\mathbf{u}_f \cdot \nabla \mathbf{u}_f)=- \nabla p + \mu \nabla ^2 \mathbf{u}_f + \mathbf{f} 
\end{eqnarray*} 
}
{latex}

-Continuity Equation

Wiki Markup
 Equation
{latex}
{\large 
\begin{align*} 
\frac{\partial \rho_f}{\partial t} + \nabla \cdot (\rho_f \mathbf{u}_f)=0
\end{align*}
} 
{latex}

where 

where

Wiki Markup
{latex}{\large$$\mathbf{u}$$}{latex}

...

is

...

the

...

fluid

...

velocity,

...

Wiki Markup
{latex}{\large$$p$$}{latex}

...

the

...

pressure,

...

Wiki Markup
{latex}{\large$$\rho_f$$}{latex}

...

the

...

fluid

...

density

...

and

Wiki Markup
{latex}{\large$$\mathbf{f}$$}{latex}

...

is

...

a

...

momentum

...

exchange

...

term

...

due

...

to

...

the

...

presence

...

of

...

particles.

...

When

...

the

...

particle

...

volume

...

fraction

Wiki Markup
{latex}{\large$$\phi$$}{latex}

...

and

...

the

...

particle

...

mass

...

loading

Wiki Markup
{latex}{\large$$M=\phi \rho_p/\rho_f$$}{latex}

...

are

...

very

...

small,

...

it

...

is

...

legitimate

...

to

...

neglect

...

the

...

effects

...

of

...

the

...

particles

...

on

...

the

...

fluid:

...

Wiki Markup
{latex}{\large$$\mathbf{f}$$}{latex}

...

can

...

be

...

set

...

to

...

zero.

...

This

...

type

...

of

...

coupling

...

is

...

called

...

one-way.

...

In

...

these

...

simulations

...

the

...

fluid

...

phase

...

is

...

air,

...

while

...

the

...

dispersed

...

phase

...

is

...

constituted

...

of

...

about

...

400

...

glass

...

beads

...

of

...

diameter

...

a

...

few

...

dozens

...

of

...

micron.

...

This

...

satisfies

...

both

...

conditions

Wiki Markup
{latex}{\large$$\phi \ll 1$$}{latex}

...

and
Wiki Markup
{latex}{\large$$M \ll 1$$}{latex}

One way-coupling is legitimate here. See ANSYS documentation (16.2) for further details about the momentum exchange term.

Particle Phase:

...

The

...

suspended

...

particles

...

are

...

considered

...

as

...

rigid

...

spheres

...

of

...

same

...

diameter

...

d,

...

and

...

density

Wiki Markup
{latex}{\large$$\rho_p$$}{latex}
.

...

Newton’s second

...

law

...

written

...

for

...

the

...

particle

...

i

...

stipulates:

Wiki Markup

{latex}{\large $$m_p \frac{d \mathbf{u}_p^i}{dt}=\mathbf{f}_{ex}^i$$}{latex}
where 

where

Wiki Markup
{latex}{\large$$\mathbf{u}_p^i$$}{latex}

...

is

...

the

...

velocity

...

of

...

particle

...

i,

...

Wiki Markup
{latex}{\large $$\mathbf{f}_{ex}^i$$}{latex}

...

the

...

forces

...

exerted

...

on

...

it,

...

and

Wiki Markup
{latex}{\large $$m_p$$}{latex}

...

its

...

mass.

...


In

...

order

...

to

...

know

...

accurately

...

the

...

hydrodynamic

...

forces

...

exerted

...

on

...

a

...

particle

...

one

...

needs

...

to

...

resolve

...

the

...

flow

...

to

...

a

...

scale

...

significantly

...

smaller

...

than

...

the

...

particle

...

diameter.

...

This

...

is

...

computationally

...

prohibitive.

...

Instead,

...

the

...

hydrodynamic

...

forces

...

can

...

be

...

approximated

...

roughly

...

to

...

be

...

proportional

...

to

...

the

...

drift

...

velocity

...

ref3:

Wiki Markup
]:
{latex}{\large $$\frac{d \mathbf{u}_p^i}{dt}=\frac{\mathbf{u}_f-\mathbf{u}_p^i}{\tau_p}$$}{latex}
where 

where

Wiki Markup
{latex}{\large $$\tau_p=\rho_p D^2/(18\mu)$$}{latex}

...

is

...

known

...

as

...

the

...

particle

...

response

...

time,

...

Wiki Markup
{latex}{\large $$\rho_p$$}{latex}

...

the

...

particle

...

density

...

and

...

D

...

the

...

particle

...

diameter.

...

This

...

equation

...

needs

...

to

...

be

...

solved

...

for

...

all

...

particles

...

present

...

in

...

the

...

domain.

...

This

...

is

...

done

...

in

...

Fluent

...

via

...

the

...

module:

...

Discrete

...

Phase

...

Model(DPM).

 

Choosing the Cases:

...

The

...

particle

...

response

...

time

...

measures

...

the

...

speed

...

at

...

which

...

the

...

particle

...

velocity

...

adapts

...

to

...

the

...

local

...

flow

...

speed.

...

Non-inertial

...

particles,

...

or

...

tracers,

...

have

...

a

...

zero

...

particle

...

response

...

time:

...

they

...

follow

...

the

...

fluid

...

streamlines.

...

Inertial

...

particles

...

with

Wiki Markup
{latex}{\large$$\tau_p \neq 0$$}{latex}

...

might

...

adapt

...

quickly

...

or

...

slowly

...

to

...

the

...

fluid

...

speed

...

variations

...

depending

...

on

...

the

...

relative

...

variation

...

of

...

the

...

flow

...

and

...

the

...

particle

...

response

...

time.

...

This

...

rate

...

of

...

adaptation

...

is

...

measured

...

by

...

a

...

non-dimensional

...

number

...

called

...

Stokes

...

number

...

representing

...

the

...

ratio

...

of

...

the

...

particle

...

response

...

time

...

to

...

the

...

flow

...

characteristic

...

time

...

scale.

Wiki Markup

{latex}{\large$$St = \frac{\tau_p}{\tau_f}$$}{latex}

In

...

these

...

simulations,

...

the

...

characteristic

...

flow

...

time

...

is

...

the

...

inverse

...

of

...

the

...

growth

...

rate

...

of

...

the

...

vortices

...

in

...

the

...

shear

...

layers.

...

This

...

is

...

also

...

predicted

...

by

...

the

...

Orr-Sommerfeld

...

equation.

...

For

...

the

...

particular

...

geometry

...

and

...

configuration

...

we

...

used

...

in

...

this

...

tutorial,

...

the

...

growth

...

rate

...

is

Wiki Markup
{latex}{\large$$\gamma = 0.1751 s^{-1} = \frac{1}{\tau_f}$$}{latex}
.

...

When

...

St

...

=

...

0

...

the

...

particles

...

are

...

tracers.

...

They

...

follow

...

the

...

streamlines

...

and,

...

in

...

particular,

...

they

...

will

...

not

...

be

...

able

...

to

...

leave

...

a

...

vortex

...

once

...

caught

...

inside.

...

When

Wiki Markup
{latex}{\large$$St \gg 1$$}{latex}
,

...

particles

...

have

...

a

...

ballistic

...

motion

...

and

...

are

...

not

...

affected

...

by

...

the

...

local

...

flow

...

conditions.

...

They

...

are

...

able

...

to

...

shoot

...

through

...

the

...

vorticies

...

without

...

a

...

strong

...

trajectory

...

deviation.

...

Intermediate

...

cases

Wiki Markup
{latex}{\large$$St \approx 1$$}{latex}

...

have

...

a

...

maximum

...

coupling

...

between

...

the

...

two

...

phases:

...

particles

...

are

...

attracted

...

to

...

the

...

vorticies,

...

but

...

once

...

they

...

reach

...

the

...

highly

...

swirling

...

vortex

...

cores

...

they

...

are

...

ejected

...

due

...

to

...

their

...

non

...

zero

...

inertia.

...

In

...

this

...

tutorial,

...

we

...

will

...

consider

...

a

...

nearly

...

tracer

...

case

...

St

...

=

...

0.2,

...

an

...

intermediate

...

case

...

St

...

=

...

1

...

and

...

a

...

nearly

...

ballistic

...

case

...

St

...

=

...

5.

...

Go to Step 2: Geometry

Go to all FLUENT Learning Modules

...