Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

The most complex section of the geometry is nasal concha or turbinates that occupy most of the cavity. These bones are long finger-like shelves in the nasal passage, extending from the top of the exterior nose to the nasopharynx. There are three sets of concha, inferior, middle and superior. Viewing the skull from the coronal plane, like you are facing the patient, shows that these concha are actually curved. These concha serve to distribute the incoming air and also warm and moisten the air before entering the lungs. Additionally there are four sets of sinuses around nasal cavity, which for this study will be removed from the geometry. The entrance of the sinuses into the nasal cavity is relatively small and does not impact the flow in cavity to any great extent.

Nasal Airway Obstructions (NAO)- The focus of this study is relieving the stress to the patient cause by nasal airway obstructions. There are many types of obstructions but the most common is a deviated septum caused by some trauma to the nose. This causes a change in the geometry between the right and left nasal passage, and the patient then experiences constant discomfort when inhaling due to the differences in pressure or shear stress on the nasal wall. Correction of these NAO is done with a 'shot-gun' surgical approach, doing as many surgeries in one procedure in hope of alleviating the problem. Being able to quantify the various surgical procedures would then help determine a single proper surgery for the patient.

Biological Specifications
1- A negative pressure should be placed at the nasopharynx, to simulate a normal inhale
2- From rhinometry data, the targeted flow out the nasopharynx should be 15 L/min during normal inhale
3- The provided patient has a deviated septum, so there should clear distinction between the pressure on the nasal wall in the right and left nasal passages
4- From previous studies, the flow may be modeled as laminar

Reference studies
Rhee, J. S., Cannon, D. E., Frank, D. O., & Kimbell, J. S. Role of Virtual Surgery in Preoperative Planning: Assessing the Individual Components of Functional Nasal Airway Surgery.

Rhee, J. S., Pawar, S. S., Garcia, G. J., & Kimbell, J. S. (2011). Toward personalized nasal surgery using computational fluid dynamics. Archives of Facial Plastic Surgery, 13(5), 305-310.

Lee, H. P., Poh, H. J., Chong, F. H., & Wang, D. Y. (2009). Changes of airflow pattern in inferior turbinate hypertrophy: A computational fluid dynamics model.American journal of rhinology & allergy, 23(2), 153-158. 

Go to Step 1 - Pre-Analysis & Start-Up
Go to all FLUENT Learning Modules