Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

...

Parameter

...

Formulation

...

Characterize

...

Collision

...

Potential

Introduction

The formulation of parameters

Latex
\large$\theta \varepsilon ^{1/3} $

...

,

...

Latex

...

\large$K_{baffle} $

...

,

...

Latex

...

\large$\Pi _{cell} $

...

and

...

are

...

described

...

below,

...

for

...

characterizing

...

flocculation

...

potential

...

using

...

numerical

...

solutions

...

from

...

CFD

...

simulations.

...

Note

...

that

...

this

...

is

...

a

...

work

...

in

...

progress,

...

so

...

the

...

notation

...

of

...

variables

...

and

...

interpretation

...

of

...

equations

...

still

...

need

...

to

...

be

...

further

...

clarified.

...

Latex

...

\large$\theta \varepsilon ^{1/3} $

...

:

...


Calculating

...

a

...

flow

...

weighted

...

average

...

of

...

Latex

...

\large$\theta \varepsilon ^{1/3} $

...

:
Latex
\large${\theta _{baffle}}{\varepsilon ^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$3$}}}} = {1 \over Q}\sum\limits_{fe} {{\theta _{fe}}\varepsilon _{fe}^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$3$}}}{Q_{fe}}}$

...

,

...

where

...


Latex

...

\large$${\theta _{fe}} = {{{\forall _{fe}}} \over {{Q_{fe}}}} = {{\Delta x\Delta y} \over {\left| {{v_x}\Delta y} \right| + \left| {{v_y}\Delta x} \right|}}$$

...

,

...


Thus

...

Latex

...

\large$${\theta _{baffle}}{\varepsilon ^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}}} = {1 \over Q}\sum\limits_{fe} {{\forall _{fe}}\varepsilon _{fe}^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$3$}}}} $$

...


Latex

...


...

\large
${K_{baffle}}$
:

Latex
{latex}:
{latex}
\large
$${\varepsilon _{fe}} = {{g{h_l}} \over {{\theta _{fe}}}}$$
{latex}
\\{latex}
Latex
\large
$${h_e} = {K_{baffle}}{{{V^2}} \over {2g}}$$
{
Latex

}\\
{latex}
\large
$${h_l} = {{{\varepsilon _{fe}}{\theta _{fe}}} \over g}$$
{latex}
\\
{latex}

Latex

\large
$${K_{baffle}} = {h_e}{{2g} \over {{V^2}}}$$

where

Latex
{latex}\\
where
\\
{latex}
\large
$${\theta _{fe}} = {{{\forall _{fe}}} \over {{Q_{fe}}}} = {{\Delta x\Delta y} \over {\left| {{v_x}\Delta y} \right| + \left| {{v_y}\Delta x} \right|}}$$
{


Latex
}
\\
{latex}
\large
$${K_{baffle}} = {1 \over Q}\sum\limits_{fe} {{{{\varepsilon _{fe}}{\theta _{fe}}} \over g}{{2g} \over {{V^2}}}{Q_{fe}}} $$
{


Latex
}
\\
{latex}
\large
$${K_{baffle}} = {2 \over {Q{V^2}}}\sum\limits_{fe} {{\varepsilon _{fe}}{\forall _{fe}}} $$
{


Latex
}
\\
{latex}
\large
$${K_{baffle}} = {2 \over {bw{V^3}}}\sum\limits_{fe} {{\varepsilon _{fe}}{\forall _{fe}}} $$
{latex}
\\
\\
where



where

Latex

{latex}
\large
$$Q = Vbw$$
{

Latex

...


...

\large
${\Pi _{cell}}$

...

:
Latex

\large
$${\varepsilon _{cell}} = {{{K_{baffle}}{V^3}} \over {2{\Pi _{cell}}b}}$$

...

,

...

plug

...

in

{
Latex
}
\large
${K_{baffle}}$
{latex}

and

...

simplify:

{
Latex
}
\large
$${\Pi _{cell}} = {1 \over {{b^2}w}}{{{{\left( {\sum\limits_{fe} {{\forall _{fe}}\varepsilon _{fe}^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$3$}}}} } \right)}^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/
{\vphantom {3 2}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$2$}}}}} \over {{{\left( {\sum\limits_{fe} {{\forall _{fe}}{\varepsilon _{fe}}} } \right)}^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 2}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$2$}}}}}}$$
{latex}
{latex}

Latex

\large
$G\theta $
:

Latex
{latex}
:
{latex}
\large
$$G{\theta _{baffle}} = {1 \over Q}\sum\limits_{fe} {{G_{fe}}{\theta _{fe}}{Q_{fe}}} $$
{


Latex
}
\\
{latex}
\large
$${\theta _{fe}} = {{{\forall _{fe}}} \over {{Q_{fe}}}} = {{\Delta x\Delta y} \over {\left| {{v_x}\Delta y} \right| + \left| {{v_y}\Delta x} \right|}}$$
{


Latex
}
\\
{latex}
\large
$$G{\theta _{baffle}} = {1 \over Q}\sum\limits_{fe} {{G_{fe}}{\forall _{fe}}} $$
{


Latex
}
\\
{latex}
\large
$${G_{fe}} \propto \sqrt {{{{\varepsilon _{fe}}} \over \nu }} $$
{latex}
\\


Latex
{latex}
\large
$$G{\theta _{baffle}} = {1 \over Q}\sum\limits_{fe} {\sqrt {{{{\varepsilon _{fe}}} \over \nu }} {\forall _{fe}}} $$
{


Latex
}
\\
{latex}
\large
$$G{\theta _{baffle}} = {1 \over {Q\sqrt \nu  }}\sum\limits_{fe} {\varepsilon _{fe}^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 2}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$2$}}}{\forall _{fe}}} $$
{latex}

All

...

parameters

...

are

...

calculated

...

from

...

summing

...

over

...

all

...

nodes

...

(finite

...

element)

...


Latex

...


\large
$$\sum {{\forall _{fe}}\varepsilon _{fe}^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$3$}}}} $$

...

,
Latex

\large
$$\sum {{\forall _{fe}}\varepsilon _{fe}^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 2}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$2$}}}} $$

...

,
Latex

\large
$$\sum {{\forall _{fe}}{\varepsilon _{fe}}} $$

...

,

...

which

...

can

...

be

...

calculated

...

using

...

the

...

following

...

UDF

...

script:

...

performance

...

.c

...

.