Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

...

A particle laden flow is a multiphase flow where one phase is the fluid and the other is dispersed particles. Governing equations for both phases are implemented in Fluent. To run a meaningful simulation, a review of the theory is necessary.

Fluid Phase:

...

In

...

the

...

simulations

...

considered

...

for

...

this

...

tutorial,

...

the

...

fluid

...

flow

...

is

...

a

...

2D

...

perturbed

...

periodic

...

double

...

shear

...

layer

...

as

...

described

...

in

...

the

...

first

...

section.

...

The

...

geometry

...

is

...

Lx

...

=

...

59.15m,

...

Ly

...

=

...

59.15m,

...

and

...

the

...

mesh

...

size

...

is

...

chosen

...

as

...

Latex

...

{\large$$\Delta x = L_x / n_x$$}

...

in

...

order

...

to

...

resolve

...

the

...

smallest

...

vorticies.

...

As

...

a

...

rule

...

of

...

thumb. One

...

typically

...

needs

...

about

...

20

...

grid

...

points

...

across

...

the

...

shear

...

layers,

...

where

...

the

...

vorticies

...

are

...

going

...

to develop.

...

The

...

boundary

...

conditions

...

are

...

periodic

...

in

...

the

...

x

...

and

...

y

...

 directions.

...

The

...

fluid

...

phase

...

satisfies the

...

Navier-Stokes

...

Equations:

...


-Momentum

...

Equations

{
Latex
}
{\large 
\begin{eqnarray*} 
\rho_f (\frac{d \mathbf{u}_f}{dt}+\mathbf{u}_f \cdot \nabla \mathbf{u}_f)=- \nabla p + \mu \nabla ^2 \mathbf{u}_f + \mathbf{f} 
\end{eqnarray*} 
}
{latex}

-Continuity

...

Equation

{
Latex
}
{\large 
\begin{align*} 
\frac{\partial \rho_f}{\partial t} + \nabla \cdot (\rho_f \mathbf{u}_f)=0
\end{align*}
} 
{latex}

where {latex}

where

Latex
{\large$$\mathbf{u}$$}

...

is

...

the

...

fluid

...

velocity,

...

Latex

...

{\large$$p$$}

...

the

...

pressure,

...

Latex

...

{\large$$\rho_f$$}

...

the

...

fluid

...

density

...

and

...

Latex

...

{\large$$\mathbf{f}$$}

...

is

...

a

...

momentum

...

exchange

...

term

...

due

...

to

...

the

...

presence

...

of

...

particles.

...

When

...

the

...

particle

...

volume

...

fraction

...

Latex

...

{\large$$\phi$$}

...

and

...

the

...

particle

...

mass

...

loading

...

Latex

...

{\large$$M=\phi \rho_p/\rho_f$$}

...

are

...

very

...

small,

...

it

...

is

...

legitimate

...

to

...

neglect

...

the

...

effects

...

of

...

the

...

particles

...

on

...

the

...

fluid:

...

Latex

...

{\large$$\mathbf{f}$$}

...

can

...

be

...

set

...

to

...

zero.

...

This

...

type

...

of

...

coupling

...

is

...

called

...

one-way.

...

In

...

these

...

simulations

...

the

...

fluid

...

phase

...

is

...

air,

...

while

...

the

...

dispersed

...

phase

...

is

...

constituted

...

of

...

about

...

400

...

glass

...

beads

...

of

...

diameter

...

a

...

few

...

dozens

...

of

...

micron.

...

This

...

satisfies

...

both

...

conditions

...

Latex

...

{\large$$\phi \ll 1$$}

...

and
Latex
{\large$$M \ll 1$$}

...

One way-coupling is legitimate here. See ANSYS documentation (16.2) for further details about the momentum exchange term.

Particle Phase:

...

The

...

suspended

...

particles

...

are

...

considered

...

as

...

rigid

...

spheres

...

of

...

same

...

diameter

...

d,

...

and

...

density

...

Latex

...

{\large$$\rho_p$$}
. Newton’s second law written for the particle i stipulates:

Latex
{latex}. Newton's second law written for the particle i stipulates:
{latex}{\large $$m_p \frac{d \mathbf{u}_p^i}{dt}=\mathbf{f}_{ex}^i$$}{latex}
where {latex}

where

Latex
{\large$$\mathbf{u}_p^i$$}

...

is

...

the

...

velocity

...

of

...

particle

...

i,

...

Latex

...

{\large $$\mathbf{f}_{ex}^i$$}

...

the

...

forces

...

exerted

...

on

...

it,

...

and

...

Latex

...

{\large $$m_p$$}

...

its

...

mass.

...


In

...

order

...

to

...

know

...

accurately

...

the

...

hydrodynamic

...

forces

...

exerted

...

on

...

a

...

particle

...

one

...

needs

...

to

...

resolve

...

the

...

flow

...

to

...

a

...

scale

...

significantly

...

smaller

...

than

...

the

...

particle

...

diameter.

...

This

...

is

...

computationally

...

prohibitive.

...

Instead,

...

the

...

hydrodynamic

...

forces

...

can

...

be

...

approximated

...

roughly

...

to

...

be

...

proportional

...

to

...

the

...

drift

...

velocity

...

ref3

...

:

{
Latex
}{\large $$\frac{d \mathbf{u}_p^i}{dt}=\frac{\mathbf{u}_f-\mathbf{u}_p^i}{\tau_p}$$}{latex}
where {latex}

where

Latex
{\large $$\tau_p=\rho_p D^2/(18\mu)$$}

...

is

...

known

...

as

...

the

...

particle

...

response

...

time,

...

Latex

...

{\large $$\rho_p$$}

...

the

...

particle

...

density

...

and

...

D

...

the

...

particle

...

diameter.

...

This

...

equation

...

needs

...

to

...

be

...

solved

...

for

...

all

...

particles

...

present

...

in

...

the

...

domain.

...

This

...

is

...

done

...

in

...

Fluent

...

via

...

the

...

module:

...

Discrete

...

Phase

...

Model(DPM).

 

Choosing the Cases:

...

The

...

particle

...

response

...

time

...

measures

...

the

...

speed

...

at

...

which

...

the

...

particle

...

velocity

...

adapts

...

to

...

the

...

local

...

flow

...

speed.

...

Non-inertial

...

particles,

...

or

...

tracers,

...

have

...

a

...

zero

...

particle

...

response

...

time:

...

they

...

follow

...

the

...

fluid

...

streamlines.

...

Inertial

...

particles

...

with

...

Latex

...

{\large$$\tau_p \neq 0$$}

...

might

...

adapt

...

quickly

...

or

...

slowly

...

to

...

the

...

fluid

...

speed

...

variations

...

depending

...

on

...

the

...

relative

...

variation

...

of

...

the

...

flow

...

and

...

the

...

particle

...

response

...

time.

...

This

...

rate

...

of

...

adaptation

...

is

...

measured

...

by

...

a

...

non-dimensional

...

number

...

called

...

Stokes

...

number

...

representing

...

the

...

ratio

...

of

...

the

...

particle

...

response

...

time

...

to

...

the

...

flow

...

characteristic

...

time

...

scale.

{
Latex
}{\large$$St = \frac{\tau_p}{\tau_f}$$}{latex}

In

...

these

...

simulations,

...

the

...

characteristic

...

flow

...

time

...

is

...

the

...

inverse

...

of

...

the

...

growth

...

rate

...

of

...

the

...

vortices

...

in

...

the

...

shear

...

layers.

...

This

...

is

...

also

...

predicted

...

by

...

the

...

Orr-Sommerfeld

...

equation.

...

For

...

the

...

particular

...

geometry

...

and

...

configuration

...

we

...

used

...

in

...

this

...

tutorial,

...

the

...

growth

...

rate

...

is

...

Latex

...

{\large$$\gamma = 0.1751 s^{-1} = \frac{1}{\tau_f}$$}

...

.

...

When

...

St

...

=

...

0

...

the

...

particles

...

are

...

tracers.

...

They

...

follow

...

the

...

streamlines

...

and,

...

in

...

particular,

...

they

...

will

...

not

...

be

...

able

...

to

...

leave

...

a

...

vortex

...

once

...

caught

...

inside.

...

When

...

Latex

...

{\large$$St \gg 1$$}

...

,

...

particles

...

have

...

a

...

ballistic

...

motion

...

and

...

are

...

not

...

affected

...

by

...

the

...

local

...

flow

...

conditions.

...

They

...

are

...

able

...

to

...

shoot

...

through

...

the

...

vorticies

...

without

...

a

...

strong

...

trajectory

...

deviation.

...

Intermediate

...

cases

...

Latex

...

{\large$$St \approx 1$$}

...

have

...

a

...

maximum

...

coupling

...

between

...

the

...

two

...

phases:

...

particles

...

are

...

attracted

...

to

...

the

...

vorticies,

...

but

...

once

...

they

...

reach

...

the

...

highly

...

swirling

...

vortex

...

cores

...

they

...

are

...

ejected

...

due

...

to

...

their

...

non

...

zero

...

inertia.

...

In

...

this

...

tutorial,

...

we

...

will

...

consider

...

a

...

nearly

...

tracer

...

case

...

St

...

=

...

0.2,

...

an

...

intermediate

...

case

...

St

...

=

...

1

...

and

...

a

...

nearly

...

ballistic

...

case

...

St

...

=

...

5.

...

Go to Step 2: Geometry

Go to all FLUENT Learning Modules

...