Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

In the simulations considered for this tutorial, the fluid flow is a 2D perturbed periodic double shear layer as described in the first section. The geometry is Lx = 59.15m, Ly = 59.15m, and the mesh size is chosen as

Wiki Markup
{latex}{\large$$\Delta x = L_x / n_x$$}{latex}
in order to resolve the smallest vorticies. As a rule of thumb. One typically needs about 20 grid points across the shear layers, where the vorticies are going to develop. The boundary conditions are periodic in the x and y  directions. The fluid phase satisfies the Navier-Stokes Equations:
-Momentum Equations
Wiki Markup
{latex}
{\large 
\begin{eqnarray*} 
\rho_f (\frac{d \mathbf{u}_f}{dt}+\mathbf{u}_f \cdot \nabla \mathbf{u}_f)=- \nabla p + \mu \nabla ^2 \mathbf{u}_f + \mathbf{f} 
\end{eqnarray*} 
}
{latex}
-Continuity Equation
Wiki Markup
{latex}
{\large 
\begin{align*} 
\frac{\partial \rho_f}{\partial t} + \nabla \cdot (\rho_f \mathbf{u}_f)=0
\end{align*}
} 
{latex}

where
Wiki Markup
{latex}{\large$$\mathbf{u}$$}{latex}
is the fluid velocity,
Wiki Markup
{latex}{\large$$p$$}{latex}
the pressure,
Wiki Markup
{latex}{\large$$\rho_f$$}{latex}
the fluid density and
Wiki Markup
{latex}{\large$$\mathbf{f}$$}{latex}
is a momentum exchange term due to the presence of particles. When the particle volume fraction
Wiki Markup
{latex}{\large$$\phi$$}{latex}
and the particle mass loading
Wiki Markup
{latex}{\large$$M=\phi \rho_p/\rho_f$$}{latex}
are very small, it is legitimate to neglect the effects of the particles on the fluid:
Wiki Markup
{latex}{\large$$\mathbf{f}$$}{latex}
can be set to zero. This type of coupling is called one-way. In these simulations the fluid phase is air, while the dispersed phase is constituted of about 400 glass beads of diameter a few dozens of micron. This satisfies both conditions
Wiki Markup
{latex}{\large$$\phi \ll 1$$}{latex}
and
Wiki Markup
{latex}{\large$$M \ll 1$$}{latex}
One way-coupling is legitimate here. See ANSYS documentation (16.2) for further details about the momentum exchange term.

...

The suspended particles are considered as rigid spheres of same diameter d, and density

Wiki Markup
{latex}{\large$$\rho_p$$}{latex}
. Newton’s second law written for the particle i stipulates:
Wiki Markup
{latex}{\large $$m_p \frac{d \mathbf{u}_p^i}{dt}=\mathbf{f}_{ex}^i$$}{latex}
where
Wiki Markup
{latex}{\large$$\mathbf{u}_p^i$$}{latex}
is the velocity of particle i,
Wiki Markup
{latex}{\large $$\mathbf{f}_{ex}^i$$}{latex}
the forces exerted on it, and
Wiki Markup
{latex}{\large $$m_p$$}{latex}
its mass.
In order to know accurately the hydrodynamic forces exerted on a particle one needs to resolve the flow to a scale significantly smaller than the particle diameter. This is computationally prohibitive. Instead, the hydrodynamic forces can be approximated roughly to be proportional to the drift velocity ref3:
Wiki Markup
{latex}{\large $$\frac{d \mathbf{u}_p^i}{dt}=\frac{\mathbf{u}_f-\mathbf{u}_p^i}{\tau_p}$$}{latex}
where
Wiki Markup
{latex}{\large $$\tau_p=\rho_p D^2/(18\mu)$$}{latex}
is known as the particle response time,
Wiki Markup
{latex}{\large $$\rho_p$$}{latex}
the particle density and D the particle diameter. This equation needs to be solved for all particles present in the domain. This is done in Fluent via the module: Discrete Phase Model(DPM).

...

This rate of adaptation is measured by a non-dimensional number called Stokes number representing the ratio of the particle response time to the flow characteristic time scale.

Wiki Markup
{latex}{\large$$St = \frac{\tau_p}{\tau_f}$$}{latex}
In these simulations, the characteristic flow time is the inverse of the growth rate of the vortices in the shear layers. This is also predicted by the Orr-Sommerfeld equation. For the particular geometry and configuration we used in this tutorial, the growth rate is
Wiki Markup
{latex}{\large$$\gamma = 0.1751 s^{-1} = \frac{1}{\tau_f}$$}{latex}
. When St = 0 the particles are tracers. They follow the streamlines and, in particular, they will not be able to leave a vortex once caught inside.

...