Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

Include Page
FLUENT Google Analytics
FLUENT Google Analytics
Include Page
Discrete Particles in a Jet - Panel
Discrete Particles in a Jet - Panel

Pre-Analysis & Start-Up

In the Pre-Analysis & Start-Up step, we'll review the following:

  • Mathematical Model: We will look at the governing equations, boundary conditions, initial field velocity function of the jet as well as the formula for calculating Stokes number in this case.
  • Expected Results: We will discuss the expected results from this simulation and compare the numerical results with the expected results.

Mathematical Model 

Governing Equations:

In almost any fluid dynamics problem, the most important governing equation has to be the Navier-Stokes equation and continuity equation. The two equations govern the fluid flow. Here we will list the Navier-Stokes equations but we will not go into further details.

Continuity Equation:

Wiki Markup
{latex}
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \textbf{v})=0 \\
\Rightarrow \nabla \cdot \textbf{v} = 0 \\
\end{align*}
{latex}

Navier-Stokes Equation:

Wiki Markup
{latex}
\begin{eqnarray*}
\rho (\frac{d \textbf{v}}{dt}+\textbf{v} \cdot \nabla \textbf{v})=- \nabla p + \mu \nabla ^2 \textbf{v} + \textbf{f}
\end{eqnarray*}
{latex}

In this case, however, we have discrete particles in the flow. Since we are using a one-way coupled scheme, the fluid imposes a force on the particles, but not vice versa. By using the particle force balance equation listed below, the particle movement can be calculated by integrating the acceleration term.

Particle Force Balance:

Wiki Markup
{latex}
\begin{align*}
&\frac{d u_p}{dt} = F_D(\overrightarrow{u}-\overrightarrow{u_p})+\frac{\overrightarrow{g}(\rho_p-\rho)}{\rho_p}+\overrightarrow{F} \\
\end{align*}
{latex}

Wiki Markup
{latex}$\overrightarrow{F}${latex}
 is an additional acceleration (force per unit particle mass) term. 
Wiki Markup
{latex}$F_D(\overrightarrow{u}-\overrightarrow{u_p})${latex}
 is the drag force per unit particle mass.

 

Wiki Markup
{latex}$F_D${latex}
 can be calculated using the formula below:

Wiki Markup
{latex}
\begin{align*}
F_D = \frac{18\mu}{\rho_d d_p ^2} \frac{C_D Re}{24}
\end{align*}
{latex}

Here, 

Wiki Markup
{latex}$\overrightarrow{u}${latex}
 is the fluid phase velocity, 
Wiki Markup
{latex}$\overrightarrow{u_p}${latex}
 is the particle velocity, 
Wiki Markup
{latex}$\mu${latex}
 is the molecular viscosity of the fluid, 
Wiki Markup
{latex}$\rho${latex}
 is the fluid density, 
Wiki Markup
{latex}$\rho_p${latex}
 is the density of the particle, and 
Wiki Markup
{latex}$d_p${latex}
 is the particle diameter. Re is the relative Reynolds, number, which is defined as 

Wiki Markup
{latex}
\begin{eqnarray*}
Re \equiv \frac{\rho d_p |\overrightarrow{u_p}-\overrightarrow{u}|}{\mu}
\end{eqnarray*}
{latex}

Initial Field Velocity Function

The initial field setup of a jet is essentially two shear layers. The two shear layers are symmetrical to the centerline. A hyperbolic tangent velocity function is used to initialize velocity field of a shear layer. The hyperbolic tangent velocity functions are preferred over discontinuous piecewise functions because hyperbolic tangent functions are more physical. The initial field velocity function for the entire jet is given below:

Wiki Markup
{latex}
\[
U_{initial}(y) =
\left\{
  \begin{array}{lr}
    tanh(32y-8) & : 0 \leq x \leq 0.5\\
    -tanh(32y-24) & : 0.5n < n \leq 1
  \end{array}
\right.
\]
{latex}

     

Wiki Markup
{latex}
\begin{align*}
&V_{initial} = 0\\
&\text{Tip:}\\
&tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}\\
\end{align*}
{latex}

The function is plotted below (x velocity versus y) using simple MATLAB codes:

Stokes Number

The Stokes number is a dimensionless number that corresponds to the behavior of particles suspended in a fluid flow. The Stokes number is defined as below:

Wiki Markup
{latex}
\begin{eqnarray*}
Stk = \frac{\tau U_0}{d_c}  (1)
\end{eqnarray*}
{latex}

Wiki Markup
{latex}$\tau${latex}
 is the relaxation time of the particle, 
Wiki Markup
{latex}$U_0${latex}
 is the fluid velocity well away from the particle, and 
Wiki Markup
{latex}$d_c${latex}
 is the characteristic length scale of the obstacle, in this case it is the diameter of the particle.

Thus: 

Wiki Markup
{latex}$d_c = d_p = d (2)${latex}

In the case of Stokes flow, where the Reynolds number is sufficiently small the relaxation time can be expressed using the equation below:

Wiki Markup
{latex}
\begin{eqnarray*}
\tau = \frac{\rho_d d_d ^2}{18 \mu_g}(3) \\
\end{eqnarray*}
{latex}

Plug (2) and (3) into (1), we get the formula for calculating the Stokes Number in our case below:

Wiki Markup
{latex}
\begin{eqnarray*}
\boxed{Stk = \frac{\rho_d \cdot d U_0}{18\mu_g}}\\
\end{eqnarray*}
{latex}

Here, 

Wiki Markup
{latex}$\rho_d${latex}
 is the density of the particle, 
Wiki Markup
{latex}$\mu_g${latex}
 is the dynamic viscosity of the fluid, in this case the dynamics viscosity of the gas.

Expected Results

Note

Under Construction


Go to Step 2: Geometry

Go to all FLUENT Learning Modules