Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

When an incompressible fluid flows through a cylindrical tube its velocity relative to the walls changes as a function of the tube radius. In general, this velocity distribution is parabolic: the greatest velocities are achieved at the center of the tube (where R=0) eventually tapering off to 0 at the walls. The parabolic nature of the distribution arises from cylindrical symmetry as well as the fact that the fluid does not move at the walls (the "no-slip" condition).

This gradient in the velocity profile contibutes to the force that a floc experiencing roll-up feels. Flocs actually begin to roll up when the velocity at their edge exposed to the flow exceeds some critical value, which is highly dependent on the floc's diameter, its density, and the capture velocity of the system, among other things.

Image Added

...