You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 17 Next »

Inlet Manifold Equations

Unknown macro: {latex}

\large
$$
\Delta H_

Unknown macro: {exp ansion}

= {{\left( {V_

Unknown macro: {in}

- V_

Unknown macro: {out}

} \right)V_

} \over g}
$$

$$
\sum\limits_

Unknown macro: {i = 1}

^

Unknown macro: {n - 1}

{\Delta H_

= V_M ^2 } \over g}{{n - 1} \over {2n \to {\rm{Approaches}}\;} V_M ^2 } \over g}\;{\rm{for\;{\rm{large}}\;{\rm{n}}
$$

$$
{\rm{where }}V_M = {\rm{velocity}}\;{\rm{in}}\;{\rm{the}}\;{\rm{manifold}}
$$
$$
V_

Unknown macro: {in}

\;{\rm{and}}\;V_

Unknown macro: {out}

\;{\rm{are}}\;{\rm{the}}\;{\rm{velocities}}\;{\rm{before}}\;{\rm{and}}\;{\rm{after}}\;{\rm{the}}\;{\rm{expansion}}
$$

$$
f = 0.25} \over {\left[ {\log \left( {{\varepsilon \over {3.7D + {{5.74} \over {{\mathop

Unknown macro: {rm Re}

\nolimits} ^

Unknown macro: {0.9}

}}} \right)} \right]^2 }}
$$

$$
C_

Unknown macro: {long}

= \left[ {f{{L_M } \over {D_M }}2n - 1} \over {6n + n - 1} \over n \right]
$$

$$
K_

Unknown macro: {control}

= K_

Unknown macro: {e_P }

\left( {{

Unknown macro: {D_M^2 }

\over {nK_

Unknown macro: {vc}

D_P^2 }}} \right)^2
$$

$$
\Pi Q = \sqrt {{{C{p_

Unknown macro: {short}

} + K_

} \over {C_{p_

} + K_

Unknown macro: {control}

}}}
$$

$$
D_M = \left( {{

Unknown macro: {8Q_M ^2 }

\over {g\pi ^2 h_l }}{{C_

Unknown macro: {long}

} \over

Unknown macro: {1 - Pi _Q^2 }

}} \right)
$$

Energy Dissipation Constraint on Port Velocity
Unknown macro: {latex}

\large
$$
D_

Unknown macro: {Port}

\cong \left[ {{1 \over {20\varepsilon _

Unknown macro: {Max}

}}\left( {{{4Q_

} \over {\pi K_

Unknown macro: {vc}

}}} \right)3 } \right]1 \over 7
$$

  • No labels