You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 1 Next »

Unknown macro: {latex}

Subscripts $L, R, M$ correspond the left half-shaft, right half-shaft, and middle gear, respectively.

Three observations:
\begin

Unknown macro: {enumerate}

\item When we hold the right axle fixed and turn the left axle one revolution, the middle sprocket makes half a revolution in the same angular direction.
\item Holding the middle sprocket in place and turning the left axle one revolution causes the right axle to make one revolution in the opposite direction.
\item The above observations are the same if the left and right axle are switched.
\end

The results can be summarized as such:
\begin

Unknown macro: {equation}

\theta_{\text{M}} = \frac

Unknown macro: {1}
Unknown macro: {2}

\theta_{\text{L}} + \frac

Unknown macro: {2}

\theta_{\text{R}}
\end

where $\theta$ represents angular position, $\omega$ represents angular velocity, $\alpha$ represents angular acceleration, and $\tau$ represents torque. $r$ is the radius of the gear, and $v$ is the linear velocity at the edge of a gear.
\begin

Unknown macro: {align}

\omega_{\text{M}} =& \frac

Unknown macro: {1}
Unknown macro: {2}

\left( \omega_{\text{L}} + \omega_{\text{R}} \right)
\omega_{\text{M}} r_{\text{M}} =& \frac

Unknown macro: {2}

( \omega_{\text{L}} r_{\text{M}} +
\omega_{\text{R}} r_{\text{M}})
v_{\text{M}} =& \frac

Unknown macro: {1}

\left( \omega_{\text{L}} r_{\text{M}} \frac{r_{\text

Unknown macro: {L}

}}{r_{\text

}} +
\omega_{\text{R}} r_{\text{M}} \frac{r_{\text

Unknown macro: {R}

}}{r_{\text

}} \right)
v_{\text{M}} =& \frac

Unknown macro: {1}
Unknown macro: {2}

\left( v_{\text{L}} \frac{r_{\text

Unknown macro: {M}

}}{r_{\text

Unknown macro: {L}

}} +
v_{\text{R}} \frac{r_{\text

}}{r_{\text

Unknown macro: {R}

}} \right)
\end

We assume that these ideal gears are frictionless and massless. Therefore, we can use conservation of energy to say that input power equals output power. Say $P$ represents power as a function of time.
\begin

Unknown macro: {align}

&P_{\text{M}} = P_{\text{L}} + P_{\text{R}}
&\tau_{\text{M}} \cdot \omega_{\text{M}} = \tau_{\text{L}} \cdot \omega_{\text{L}} +
\tau_{\text{R}} \cdot \omega_{\text{R}}
&\tau_{\text{M}} \cdot \left[ \frac

Unknown macro: {1}
Unknown macro: {2}

\left( \omega_{\text{L}} + \omega_{\text{R}} \right) \right]
= \tau_{\text{L}} \cdot \omega_{\text{L}} +
\tau_{\text{R}} \cdot \omega_{\text{R}}
\end

If we consider $\omega_{\text{L}}$ and $\omega_{\text{R}}$ separately, we find that
\begin

Unknown macro: {align}

\frac

Unknown macro: {1}
Unknown macro: {2}

\tau_{\text{M}} \omega_{\text{L}} &= \tau_{\text{L}} \omega_{\text{L}}, \;\;\;
\frac

Unknown macro: {2}

\tau_{\text{M}} \omega_{\text{R}} = \tau_{\text{R}} \omega_{\text{R}}
\frac

Unknown macro: {1}

\tau_{\text{M}} &= \tau_{\text{L}}, \;\;\;\;\;\;\; \;\; \; \;\; \frac

Unknown macro: {1}
Unknown macro: {2}

\tau_{\text{M}} = \tau_{\text{R}}
\end

Therefore, we can conclude that the relationships between torques is the same as the relationships between angular position: \textit

Unknown macro: {the torque on the middle gear is evenly divided between the torque on the left gear and the torque on the right gear.}

\begin

Unknown macro: {align}

\tau_{\text{M}} &= \tau_{\text{L}} + \tau_{\text{R}}
\tau_{\text{L}} &= \tau_{\text{R}} = \frac

Unknown macro: {1}
Unknown macro: {2}

\tau_{\text{M}}
\end

  • No labels