You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 26 Next »

Unable to render {include} The included page could not be found.
Unable to render {include} The included page could not be found.

Pre-Analysis & Start-Up

Pre-Analysis

Mathematical Model 

Governing Equations

The governing equations are the continuity and Navier-Stokes equations. These equations are written in a steady rotating frame of reference. This has the advantage of making our simulation not require a moving mesh. 

This form of the Navier Stokes equations has additional terms, namely the centripetal acceleration term and the Coriolis term. The equations that we will use look as follows:

Conservation of mass:

Unknown macro: {latex}

\begin

Unknown macro: {equation*}

\frac

Unknown macro: {partial rho}
Unknown macro: {partial t}

+\nabla \cdot \rho \vec

Unknown macro: {v}

^

Unknown macro: {,}

_r =0
\end

Conservation of Momentum (Navier-Stokes):

Unknown macro: {latex}

\begin

Unknown macro: {equation*}

\nabla \cdot (\rho \vec

Unknown macro: {v}

^

Unknown macro: {,}

_r \vec

^

Unknown macro: {,}

_r)+\rho(2 \vec

Unknown macro: {omega}

^

\times \vec

Unknown macro: {v}

^

Unknown macro: {,}

_r+\vec

Unknown macro: {omega}

^

\times \vec

Unknown macro: {omega}

^

Unknown macro: {,}

\times \vec

Unknown macro: {r}

^

)=-\nabla p +\nabla \cdot \overline{\overline{\tau}}_r
\end

Where

Unknown macro: {latex}

$vec

Unknown macro: {v}

^

Unknown macro: {,}

_r$

is the relative velocity (the velocity viewed from the moving frame) and

Unknown macro: {latex}

$vec

Unknown macro: {omega}

^

Unknown macro: {,}

$

is the angular velocity.

In Fluent, we'll turn on the additional terms for a moving frame of reference and input 

Unknown macro: {latex}

$vec

Unknown macro: {omega}

^

Unknown macro: {,}

=\omega \mathbf{\hat{k}}$

For more information about flows in a moving frame of reference, visit ANSYS Help View > Fluent > Theory Guide > 2. Flow in a Moving Frame of Reference  and  ANSYS Help Viewer > Fluent > User's Guide > 9. Modeling Flows with Moving Reference Frames

Important: We use the Reynolds Averaged form of continuity and momentum and use the SST k-omega turbulence model to close the equation set. 

Boundary Conditions

We model only 1/3 of the full domain using periodicity assumptions:

Unknown macro: {latex}

\begin

Unknown macro: {equation*}

\vec

Unknown macro: {v}

^

Unknown macro: {,}

(r_1,\theta_1) = \vec

^

Unknown macro: {,}

(r_1,\theta_1 - 120)
\end

Inlet: Velocity of 12 m/s with turbulent viscosity of 5% and turbulent viscosity ratio of 10 

Outlet: Pressure of 1 atm 

Blade: No-slip

Side Boundaries: Periodic

Under Construction

Numerical Solution Procedure in ANSYS

FLUENT converts these differential equations into a set of algebraic equations. Inverting these algebraic equations gives the value of (u, v, omega, p) at the cell centers. Everything else is derived from the cell centers values (post-processing). In our mesh, we'll have around 400,000 cells. The total number of unknowns and hence algebraic equations is:

400,000 * 4 = 1.6 million.

This huge set of algebraic equations is inverted through an iterative process. The matrix to be inverted is huge but sparse. 

Solver: Pressure-based

Under Construction

Hand-Calculations of Expected Results

One simple hand-calculation that we can do now before even starting our simulation is to find theoretical wind velocity at the tip. We can then later compare our answer with what we get from our simulation to verify that they agree. 

The velocity, v, on the blade should follow the formula

Unknown macro: {latex}

\begin

Unknown macro: {equation*}

v=r \times \omega_{}
\end

Plugging in our angular velocity of -2.22 rad/s and using the blade length of 43.2 meters plus 1 meter to account for the distance from the root to the hub, we get

Unknown macro: {latex}

\begin

Unknown macro: {equation*}

v=-2.22\ \mathrm

Unknown macro: {rad/s}

\ \mathbf{\hat{k}} \times -44.2\ \mathrm

Unknown macro: {m}

\ \mathbf{\hat{i}}
\end

\begin

Unknown macro: {equation*}

v=98.1\ \mathrm

Unknown macro: {m/s}

\ \mathbf{\hat{j}}
\end

Start-Up



Go to Step 2: Geometry

Go to all FLUENT Learning Modules

  • No labels