Author: Rajesh Bhaskaran, Cornell University
Problem Specification
[1. Pre-Analysis & Start-up]
[2. Geometry]
[3. Mesh]
[4. Setup (Physics)]
[5. Solution]
[6. Results]
[7. Verification & Validation]
[Problem 1]
[Problem 2]
Problem Specification
Consider fluid flowing through a circular pipe of constant cross-section. The pipe diameter D = 0.2 m and length L = 8 m. The inlet velocity Ūz = 1 m/s. Consider the velocity to be constant over the inlet cross-section. The fluid exhausts into the ambient atmosphere which is at a pressure of 1 atm. Take density ρ = 1 kg/ m3 and coefficient of viscosity µ = 2 x 10-3 kg/(ms). The Reynolds number Re based on the pipe diameter is
\large
$$
= {\rho {\bar{U}}_zD \over \mu} = 100
$$
where Ūz is the average velocity at the inlet, which is 1 m/s in this case.
Solve this problem using FLUENT via ANSYS Workbench. Plot the centerline velocity, wall skin-friction coefficient, and velocity profile at the outlet. Validate your results.
Note: The values used for the inlet velocity and flow properties are chosen for convenience rather than to reflect reality. The key parameter value to focus on is the Reynolds number.
[Go to Step 1: Pre-Analysis & Start-up]