Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Problem Specification
1. Start-up and preliminary set-up
2. Specify element type and constants
3. Specify material properties
4. Specify geometry
5. Mesh geometry
6. Specify boundary conditions
7. Solve!
8. Postprocess the results
9. Validate the results

...

All remaining d.o.f. are unrestrained. Setting u=0 at A prevents rigid body motion in the r-direction. Setting v=0 on face 1 nodes prevents circumferential motion of face 1. Setting w=0 on ABCD imposes symmetry about the middle r-θ plane. The above BC on face 2 nodes causes face 2 to remain plane as it rotates about a z-parallel axis at r=rc. The factor 0.0001 is arbitrarily chosen. At the outset, the appropriate value of rc is not known. The right value of rc will give a pure bending load so that the radial reaction RA at node A is zero. Two preliminary FE analysis with guess values of rc=60mm and rc=70mm were done. The respective RA values turn out to be 2001N and 357N. By linear extrapolation, RA=0 when rc=72.2mm. So we'll use rc=72.2mm in our analysis. (Since this is a pedagogical exercise, I've decided to be nice and give you the rc value to use. In the real world, you'd of course have to figure it out yourself).

Go to Step 1: Start-up and preliminary set-up