Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Include Page
(ANSYS or FLUENT) Google Analytics(
ANSYS or FLUENT) Google Analytics
Include Page
(Tutorial Name) ANSYS AIM I Beam - Panel(Tutorial Name)
ANSYS AIM I Beam - Panel

...

A non-slender cantilever beam under point tip loading

Created using ANSYS (Version Number)

Learning Goals

In this tutorial, you will learn to:

  • (e.g.: Determine the displacements and stresses in a bike crank using 3D FEA capabilities in ANSYS Mechanical)
  • (e.g.: Verify the finite-element results from ANSYS by refining the mesh and also comparing with hand calculations)
Note

Under Construction

Problem Specification

Note

Under Construction

17.1

Problem Specification

Consider a fixed-end, aluminum cantilever I-beam point-loaded at its tip as shown in the figure below.  We will be solving for directional deformations and normal stresses in this tutorial.

Image Added

P = 1000 lbf, L = 24 in, c = 4 in

The cross-sectional area and  second moment of inertia are A = 9.45 in^2  and I = 112.3 in^4 respectively.  These values correspond to the I-beam cross-section shown in the next figure along with a fully three-dimensional solid model of the beam for purposes of visualization.  Use the following material properties for the aluminum beam: 

Young's Modulus = 1e7 psi,  Poisson's Ratio = 0.33

Image Added

Learning Goals

The purpose of this tutorial is to showcase, in a relatively simple situation, where simple beam theory is no longer as valid as it is in the limit of a long and slender beam geometry.  In some commercial codes, simple one-dimensional cubic beam elements for bending deflection, do not capture shear deflection when the beam is no longer slender. Alternatively in ANSYS, if shear deflection is accounted for in the 1D element formulation, results for the beam’s tip deflection will not agree with tip deflections predicted by simple Euler-Bernoulli beam theory. Again, attempts to capture this effect by using more elements will ultimately fail. Either the necessary physics is not contained in the element formulation or it is and the results are compared to simpler theory. Either way, using more elements captures “no more” of the solution than does a coarser discretization.

This tutorial is meant to highlight where it is relatively straightforward to apply 3D FEA and resolve a correct solution, which contradicts analytical treatment with simple formulae such as bending tip deflection =

  Image Added

 
Go to Step 1: Pre-Analysis & and Start-Up

Go to all ( ANSYS or FLUENT) AIM Learning Modules