Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Include Page
SIMULATION: FLUENT Google Analytics
SIMULATION: FLUENT Google Analytics
Panel

Problem Specification
1. Pre-Analysis & Start-Up
2. Geometry
3. Mesh
4. Setup (Physics)
5. Solution
6. Results
7. Verification & Validation
Exercises

...

Consider developing flow in a pipe of length L = 8 m, diameter D = 0.2 m, ρ = 1 kg/m3 , µ =2 × 10^−3 kg/m s, and entrance velocity u_in = 1 m/s (the conditions specified in the Problem Specification section). Use FLUENT with the "second-order upwind" scheme for momentum to solve for the flowfield on meshes of 100 × 5, 100 × 10 and 100 × 20 (axial divisions × radial divisions).

...

Hint: To interpret your results, you should keep in mind that the first or second-order upwind discretization applies only to the inertia terms in the momentum equation. The discretization of the viscous terms is always second-order accurate.

Return To Problem Specification

See and rate the complete Learning Module

...