Panel |
---|
UNDER CONSTRUCTION Author: Daniel Kantor and Andrew Einstein, Cornell University Problem Specification |
Problem Specification
The purpose of this tutorial is to illustrate the setup and solution of a turbulent flow past a sphere. Flow past a sphere is one of the classical problems of fluid mechanics. For this problem, we will be looking at Reynolds number of 1.14E6.
Latex |
---|
Wiki Markup |
{panel} UNDER CONSTRUCTION Author: Daniel Kantor and Andrew Einstein, Cornell University {color:#ff0000}{*}Problem Specification{*}{color} [1. Create Geometry in GAMBIT|FLUENT - Steady Flow Past a Sphere - Step 1] [2. Mesh Geometry in GAMBIT|FLUENT - Steady Flow Past a Sphere - Step 2] [3. Specify Boundary Types in GAMBIT|FLUENT - Steady Flow Past a Sphere - Step 3] [4. Set Up Problem in FLUENT|FLUENT - Steady Flow Past a Sphere - Step 4] [5. Solve\!|FLUENT - Steady Flow Past a Sphere - Step 5] [6. Analyze Results|FLUENT - Steady Flow Past a Sphere - Step 6] [7. Refine Mesh|FLUENT - Steady Flow Past a Sphere - Step 7] [Problem 1|FLUENT - Steady Flow Past a Sphere - Problem 1] [Problem 2|FLUENT - Steady Flow Past a Sphere - Problem 2] {panel} h2. Problem Specification !pb_img001.jpg! The purpose of this tutorial is to illustrate the setup and solution of a turbulent flow past a sphere. Flow past a sphere is one of the classical problems of fluid mechanics. For this problem, we will be looking at Reynolds number of 1.14E6. {latex} \large $$ {Re} = {\rho VD \over \mu} $$ {latex} |
We
...
know
...
D
...
=
...
6.
...
To
...
obtain
...
Re
...
=
...
1.14E6,
...
we
...
can
...
arbitrarily
...
set
...
ρ,
...
V
...
and
...
μ,
...
but
...
will
...
use
...
the
...
standard
...
values
...
in
...
Fluent.
...
For
...
our
...
case,
...
let's
...
set
...
ρ
...
=
...
1.225
...
kg/m
...
3 ,
...
V
...
=
...
2.7754
...
m/s
...
and
...
μ
...
=
...
1.7894E-05
...
kg/ms.
...
Preliminary Analysis
For Re = 1.14E6,
...
we
...
are
...
looking
...
at
...
turbulent
...
flow.
...
What
...
will
...
be
...
the
...
velocity
...
profile
...
of
...
this
...
flow?
...
What
...
will
...
be
...
the
...
drag
...
coefficient
...
of
...
the
...
sphere?
...
What
...
will
...
be
...
the
...
pressure
...
coefficient
...
around
...
sphere?
...
How
...
will
...
the
...
streamlines
...
around
...
sphere look
...
?
...
Let's
...
start
...
the
...
modeling
...
in
...
our
...
quest
...
to
...
find
...
out
...
the
...
answer
...
!
...
We'll
...
create
...
the
...
geometry
...
and
...
mesh
...
in
...
GAMBIT
...
which
...
is
...
the
...
preprocessor
...
for
...
FLUENT,
...
and
...
then
...
read
...
the
...
mesh
...
into
...
FLUENT
...
and
...
solve
...
for
...
the
...
flow
...
solution.
...
...
...
...
...
...
...
...