...
Conservation of mass:
Latex |
---|
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot \rho \vec{v}^{\,}_r =0
\end{equation*}
|
Conservation of Momentum (Navier-Stokes):
Latex |
---|
\begin{equation*}
\nabla \cdot (\rho \vec{v}^{\,}_r \vec{v}^{\,}_r)+\rho(2 \vec{\omega}^{\,} \times \vec{v}^{\,}_r+\vec{\omega}^{\,} \times \vec{\omega}^{\,} \times \vec{r}^{\,})=-\nabla p +\nabla \cdot \overline{\overline{\tau}}_r
\end{equation*}
|
Where
Latex |
---|
$\vec{v}^{\,}_r$ |
is the relative velocity (the velocity viewed from the moving frame) and
Latex |
---|
$\vec{\omega}^{\,}$ |
is the angular velocity.
Note the additional terms for the Coriolis force (
Latex |
---|
$2 \vec{\omega}^{\,} \times \vec{v}^{\,}_r$ |
) and the centripetal acceleration (
Latex |
---|
$\vec{\omega}^{\,} \times \vec{\omega}^{\,} \times \vec{r}^{\,}$ |
) in the Navier-Stokes equations. In Fluent, we'll turn on the additional terms for a moving frame of reference and input
Latex |
---|
$\vec{\omega}^{\,}= -2.22 \mathbf{\hat{k}}$ |
.
For more information about flows in a moving frame of reference, visit ANSYS Help View > Fluent > Theory Guide > 2. Flow in a Moving Frame of Reference and ANSYS Help Viewer > Fluent > User's Guide > 9. Modeling Flows with Moving Reference Frames.
...
We model only 1/3 of the full domain using periodicity assumptions:
Latex |
---|
\begin{equation*}
\vec{v}^{\,}(r_1,\theta) = \vec{v}^{\,}(r_1,\theta_1 - 120n)
\end{equation*}
|
...
This therefore proves that the velocity distribution at theta of 0 and 120 degrees are the same. If we denote theta_1 to represent one of the periodic boundaries for the 1/3 domain and theta_2 being the other boundary, then
Latex |
---|
$\vec{v}^{\,}(r_i,\theta_1)=\vec{v}^{\,}(r_i,\theta_2)$ |
.
The boundary conditions on the fluid domain are as follow:
...
The velocity, v, on the blade should follow the formula
Latex |
---|
\begin{equation*}
v=r \times \omega_{}
\end{equation*}
|
Plugging in our angular velocity of -2.22 rad/s and using the blade length of 43.2 meters plus 1 meter to account for the distance from the root to the hub, we get
Latex |
---|
$$v=-2.22\ \mathrm{rad/s}\ \mathbf{\hat{k}} \times -44.2\ \mathrm{m}\ \mathbf{\hat{i}}$$ $$v=98.1012\ \mathrm{m/s}\ \mathbf{\hat{j}}$$ |
...
Thus, at rated wind speed,
Latex |
---|
\begin{eqnarray*}
C_p = \frac{P_{rated}}{P_{wind}}
= \frac{P_{rated}}{0.5\rho A V_{rated}^3}
= \frac{P_{rated}}{0.5(1.225\frac{kg}{m^3})(\frac{\pi(82.5m)^2}{4})(11.5\frac{m}{s})^3}
= 0.30
\end{eqnarray*}
|
...