HTML |
---|
<div style="background-color: yellow; border: 2px solid red; margin: 4px; padding: 2px; font-weight: bold; text-align: center;">
This page has been moved to <a href="https://courses.ansys.com/index.php/courses/unsteady-flow-past-a-cylinder/">https://courses.ansys.com/index.php/courses/unsteady-flow-past-a-cylinder/</a>
<br>
Click in the link above if you are not automatically redirected in 10 seconds.
</div>
<meta http-equiv="refresh" content="10; URL='https://courses.ansys.com/index.php/courses/unsteady-flow-past-a-cylinder/'" /> |
Include Page | ||||
---|---|---|---|---|
|
Include Page | ||||
---|---|---|---|---|
|
Unsteady Flow Past a Cylinder
Created using ANSYS 13.0
Problem Specification
Consider the unsteady state case of a fluid flowing past a cylinder, as illustrated above
Panel |
---|
Author: John Singleton and Rajesh Bhaskaran Problem Specification |
Note |
---|
Under Construction!! |
Problem Specification
In this tutorial we will simulate the unsteady flow of a fluid past a cylinder. For this tutorial we will use a Reynolds Number of 120. In order to simplify the computation, the diameter of the pipe cylinder is set to 1 m, the x component of the velocity is set to 1 m/s and the density of the fluid is set to 1 kg/m^3. Thus, the dynamic viscosity must be set to 8.333x10^-3 kg/m*s in order to obtain the desired Reynolds number.
Compared to the steady case, the unsteady case includes an additional time-derivative term in the Navier-Stokes equations:
Latex |
---|
\begin{eqnarray}
\frac{\partial \vec{u}}{\partial t} + \rho (\vec{u}\cdot \triangledown)\vec{u} = -\triangledown p + \mu \triangledown^{2} \vec{u}
\end{eqnarray}
|
The methods implemented by FLUENT to solve a time dependent system are very similar to those used in a steady-state case. In this case, the domain and boundary conditions will be the same as the Steady Flow Past a Cylinder. However, because this is a transient system, initial conditions at t=0 are required. To solve the system, we need to input the desired time range and time step into FLUENT. The program will then compute a solution for the first time step, iterating until convergence or a limit of iterations is reached, then will proceed to the next time step, "marching" through time until the end time is reached.
Go to Step 1: Pre-Analysis and & Start-Up
See and rate the complete Learning Module