Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

...

Sludge

...

Drain

...

Design

...

Program

...

This

...

program

...

designs

...

the

...

channel

...

that

...

will

...

be

...

used

...

for

...

the

...

sedimentation

...

tank

...

sludge

...

drainage.

...

The

...

sludge

...

drain

...

runs

...

along

...

the

...

bottom

...

of

...

the

...

each

...

sedimentation

...

tank

...

and

...

collects

...

the

...

flocs

...

as

...

they

...

fall

...

from

...

the

...

lamella

...

and

...

slopes.

...

Sludge

...

Drain

...

Design

...

Algorithm

...

Sludge

...

Drain

...

AutoCAD

...

Drawing

...

Program

Algorithm

The number of sludge drains is determined by the number of sloped pairs in the sedimentation tanks. This is defined as N.SedSludge,

...

and

...

uses

...

the

...

number

...

of

...

slope

...

pairs

...

calculated

...

in

...

the

...

Sedimentation

...

Inlet

...

Slopes

...

program.

...

The

...

orifice

...

spacing

...

of

...

the

...

sludge

...

drain

...

is

...

set

...

so

...

that

...

there

...

are

...

two

...

orifices

...

per

...

slope

...

plate.

...

So

...

orifice

...

spacing

...

is

...

calculated

...

as

...

W.SedSlopePlate/2.

...

The

...

width

...

of

...

the

...

sed

...

slope

...

plates

...

is

...

a

...

basic

...

user

...

input.

...

Next,

...

the

...

number

...

of

...

orifices

...

in

...

the

...

pipe

...

can

...

be

...

calculated

...

given

...

the

...

orifice

...

spacing

...

and

...

the

...

length

...

of

...

the

...

sedimentation

...

tank

...

from

...

the

...

Sedimentation

...

program.

...

Include Page
N.SedSludgeOrifices
N.SedSludgeOrifices

...

The

...

dimensions

...

of

...

the

...

sludge

...

drain

...

channel

...

and

...

the

...

sludge

...

valve

...

are

...

determined

...

based

...

on

...

the

...

maximum

...

acceptable

...

head

...

loss

...

through

...

the

...

drain.

...

Here

...

it

...

is

...

assumed

...

that

...

we

...

are

...

willing

...

to

...

use

...

80%

...

of

...

the

...

available

...

head

...

to

...

get

...

the

...

flow

...

through

...

the

...

valve.

...

So

...

HL.Valve

...

=

...

0.8

...

HW.Sed.

...

Calculation

...

of

...

the

...

diameter

...

of

...

the

...

valve

...

requires

...

that

...

we

...

know

...

the

...

drain

...

rate.

...

This

...

value

...

is

...

determined

...

by

...

the

...

dimensions

...

of

...

the

...

sed

...

tank

...

and

...

the

...

time

...

needed

...

to

...

drain

...

the

...

tank,

...

a

...

user

...

defined

...

value.

{
Latex
}
\large
$$
Q_{SedSludgeDrain}  = {{W_{SedBay} L_{Sed} HW_{SedEst} } \over {0.5Ti_{SludgeDrain} }}
$$
{latex}

This

...

initial

...

drain

...

rate

...

is

...

then

...

used

...

to

...

calculate

...

the

...

diameter

...

of

...

the

...

valve

...

needed

...

via

...

the

...

D.pipeschedule

...

funcion

...

of

...

the

...

Fluids

...

Functions

...

program.

{
Latex
}
\large
$$
ND_{SedSludgeValve}  = D_{pipeschedule} (Q_{SedSludgeDrain} ,EN_{PipeSpec} ,HL_{Valve} ,T_{PlantWall} ,Nu_{Water} ,E_{Pvc} ,K_{GateValve}  + K_{PipeExit} )
$$
{latex}

The

...

actual

...

head

...

loss

...

across

...

the

...

valve

...

is

...

then

...

calculated

...

from

...

the

...

head

...

loss

...

function

...

found

...

in

...

Fluids Functions

Latex
 Functions|Fluids Functions Design Program]
{latex}
\large
$$
HL_{Valve}  = h_e (Q_{SedSludgeDrain} ,innerdiameter(ND_{SedSludgeValve} ,EN_{PipeSpec} ),K_{GateValve}  + K_{PipeExit} )
$$
{latex}

Using

...

this

...

result

...

we

...

can

...

find

...

the

...

desired

...

head

...

loss

...

across

...

the

...

sludge

...

drain

...

and

...

then

...

the

...

required

...

size

...

of

...

the

...

drain

...

channel.

{
Latex
}
\large
$$
HL_{SludgeDrain}  = HW_{Sed}  - HL_{Valve}
$$
{latex}

The

...

diameter

...

of

...

the

...

sludge

...

drain

...

pipe

...

is

...

estimated

...

through

...

an

...

iterative

...

process,

...

using

...

the

...

ID.Manifold

...

equation

...

found

...

in

...

the

...

Fluids

...

Functions

...

program.

...

Include Page
ND.SedSludge
ND.SedSludge

...

Because

...

the

...

sludge

...

drain

...

is

...

no

...

longer

...

a

...

pipe

...

but

...

now

...

a

...

rectangular

...

channel,

...

this

...

diameter

...

is

...

then

...

used

...

to

...

calculate

...

the

...

required

...

cross-sectional

...

area

...

of

...

the

...

drain.

...

Based

...

on

...

manifold

...

theory,

...

the

...

total

...

area

...

of

...

the

...

sludge

...

orifices

...

is

...

equal

...

to

...

the

...

cross

...

sectional

...

area

...

of

...

the

...

manifold.

{
Latex
}
\large
$$
A_{SedSludge}  = {\pi  \over 4}ID_{SedSludge} ^2
$$
{latex}

In

...

order

...

to

...

reduce

...

the

...

total

...

depth

...

of

...

the

...

sed

...

tanks

...

we

...

assume

...

that

...

the

...

sludge

...

drain

...

is

...

twice

...

as

...

wide

...

as

...

it

...

is

...

high.

{
Latex
}
\large
$$
W_{SedSludge}  = \sqrt {2A_{SedSludge} }
$$
{latex}
{latex}
Latex
\large
$$
H_{SedSludge}  = {{A_{SedSludge} } \over {W_{SedSludge} }}
$$
{latex}

Once

...

the

...

total

...

area

...

of

...

the

...

orifices

...

and

...

the

...

number

...

of

...

orifices

...

have

...

been

...

calculated

...

the

...

diameter

...

of

...

each

...

orifice

...

is

...

found

...

by

...

rounding

...

the

...

required

...

diameter

...

up

...

to

...

the

...

next

...

available

...

drill

...

diameter.

...


The

...

initial

...

flow

...

rate

...

through

...

the

...

sludge

...

drain

...

is

...

calculated

...

using

...

the

...

Q.Orifice

...

equation

...

found

...

in

...

Fluids

...

Functions:

Latex
 Design Program]:
{latex}
\large
$$
Q_{SludgeDrainInitial}  = Pi_{VenaContractaOrifice} A_{SedSludgeOrifice} \sqrt {2gHW_{Sed} }
$$
{latex}

The

...

thickness

...

and

...

width

...

of

...

the

...

drain

...

cover

...

are

...

determined

...

using

...

geometry.

{
Latex
}
\large
$$
T_{SedSludge}  = T_{SedInletSlope} (1 + \sin (AN_{SedTopInlet} ))
$$
{latex}

Determination

...

of

...

W.SedDrainCover:

{
Latex
}
\large
$$
W_{SedDrainCover}  = W_{SedSludgeFlat}  + 2_{WSedSludgeSF}  + 2{{T_{SedInletSlope} } \over {\sin (AN_{SedTopInlet} )}}
$$



Wiki Markup
{latex}
\\
\\
{float:left|border=2px solid black}
[!bottomsedtank.bmppng!|^bottomsedtank.png]|width=800px!|bottomsedtank.bmp]
{float}
\\
\\