Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

...

Sludge

...

Drain

...

Design

...

Program

...

This

...

program

...

designs

...

the

...

channel

...

that

...

will

...

be

...

used

...

for

...

the

...

sedimentation

...

tank

...

sludge

...

drainage.

...

The

...

sludge

...

drain

...

runs

...

along

...

the

...

bottom

...

of

...

the

...

each

...

sedimentation

...

tank

...

and

...

collects

...

the

...

flocs

...

as

...

they

...

fall

...

from

...

the

...

lamella

...

and

...

slopes.

...

Sludge

...

Drain

...

Design

...

Algorithm

Sludge Drain AutoCAD Drawing Program

Algorithm

The number of sludge drains is determined by the number of sloped pairs in the sedimentation tanks. This is defined as N.SedSludge, and uses the number of slope pairs calculated in the Sedimentation Inlet Slopes program.

The orifice spacing of the sludge drain is set so that there are two orifices per slope plate. So orifice spacing is calculated as W.SedSlopePlate/2.

...

The

...

width

...

of

...

the

...

sed

...

slope

...

plates

...

is

...

a

...

basic

...

user

...

input.

...

Next,

...

the

...

number

...

of

...

orifices

...

in

...

the

...

pipe

...

can

...

be

...

calculated

...

given

...

the

...

orifice

...

spacing

...

and

...

the

...

length

...

of

...

the

...

sedimentation

...

tank

...

from

...

the

...

Sedimentation

...

program.

...

Include Page
N.SedSludgeOrifices
N.SedSludgeOrifices

...

The

...

dimensions

...

of

...

the

...

sludge

...

drain

...

channel

...

and

...

the

...

sludge

...

valve

...

are

...

determined

...

based

...

on

...

the

...

maximum

...

acceptable

...

head

...

loss

...

through

...

the

...

drain.

...

Here

...

it

...

is

...

assumed

...

that

...

we

...

are

...

willing

...

to

...

use

...

80%

...

of

...

the

...

available

...

head

...

to

...

get

...

the

...

flow

...

through

...

the

...

valve.

...

So

...

HL.Valve

...

=

...

0.8

...

HW.Sed.

...

Calculation

...

of

...

the

...

diameter

...

of

...

the

...

valve

...

requires

...

that

...

we

...

know

...

the

...

drain

...

rate.

...

This

...

value

...

is

...

determined

...

by

...

the

...

dimensions

...

of

...

the

...

sed

...

tank

...

and

...

the

...

time

...

needed

...

to

...

drain

...

the

...

tank,

...

a

...

user

...

defined

...

value.

{
Latex
}
\large
$$
Q_{SedSludgeDrain}  = {{W_{SedBay} L_{Sed} HW_{SedSedEst} } \over {0.5Ti_{SludgeDrain} }}
$$
{latex}

This

...

initial

...

drain

...

rate

...

is

...

then

...

used

...

to

...

calculate

...

the

...

diameter

...

of

...

the

...

valve

...

needed

...

via

...

the

...

D.pipeschedule

...

funcion

...

of

...

the

...

Fluids

...

Functions

...

program.

{
Latex
}
\large
$$
ND_{SedSludgeValve}  = D_{pipeschedule} (Q_{SedSludgeDrain} ,EN_{PipeSpec} ,HL_{Valve} ,T_{PlantWall} ,Nu_{Water} ,EpE_{vcPvc} ,K_{GateValve}  + K_{PipeExit} )
$$
{latex}

The

...

actual

...

head

...

loss

...

across

...

the

...

valve

...

is

...

then

...

calculated

...

from

...

the

...

head

...

loss

...

function

...

found

...

in

...

Fluids Functions

Latex
 Functions|Fluids Functions Design Program]
{latex}
\large
$$
HL_{Valve}  = h_e (Q_{SedSludgeDrain} ,innerdiameter(ND_{SedSludgeValve} ,EN_{PipeSpec} ),K_{GateValve}  + K_{PipeExit} )
$$
{latex}

Using

...

this

...

result

...

we

...

can

...

find

...

the

...

desired

...

head

...

loss

...

across

...

the

...

sludge

...

drain

...

and

...

then

...

the

...

required

...

size

...

of

...

the

...

drain

...

channel.

{
Latex
}
\large
$$
HL_{SludgeDrain}  = HW_{Sed}  - HL_{Valve}
$$
{latex}

The

...

diameter

...

of

...

the

...

sludge

...

drain

...

pipe

...

is

...

estimated

...

through

...

an

...

iterative

...

process,

...

using

...

the

...

ID.Manifold

...

equation

...

found

...

in

...

the

...

Fluids

...

Functions

...

program.

...

Include Page
ND.SedSludge
ND.SedSludge

...

Because

...

the

...

sludge

...

drain

...

is

...

no

...

longer

...

a

...

pipe

...

but

...

now

...

a

...

rectangular

...

channel,

...

this

...

diameter

...

is

...

then

...

used

...

to

...

calculate

...

the

...

required

...

cross-sectional

...

area

...

of

...

the

...

drain.

...

Based

...

on

...

manifold

...

theory,

...

the

...

total

...

area

...

of

...

the

...

sludge

...

orifices

...

is

...

equal

...

to

...

the

...

cross

...

sectional

...

area

...

of

...

the

...

manifold.

{
Latex
}
\large
$$
TotalAreaA_{SludgeOrificesSedSludge}  = {\pi  \over 4}NDID_{SedSludge} ^2
$$

In order to reduce the total depth of the sed tanks we assume that the sludge drain is twice as wide as it is high.

Latex

\large
$$
W_{SedSludge}  = \sqrt {2A_{SedSludge} }
$$
Latex
{latex}
Given the required area for uniform flow, and the depth of the drain, H.SedSludge (set to be 5 cm in [Design Assumptions|Design Assumptions Design Program]), the width of the drain is calculated.
{latex}
\large
$$
WH_{SedSludge}  = {{TotalAreaA_{SludgeOrificesSedSludge} } \over {HW_{SedSludge} }}
$$
{latex}

Once

...

the

...

total

...

area

...

of

...

the

...

orifices

...

and

...

the

...

number

...

of

...

orifices

...

have

...

been

...

calculated

...

the

...

diameter

...

of

...

each

...

orifice

...

is

...

found

...

by

...

rounding

...

the

...

required

...

diameter

...

up

...

to

...

the

...

next

...

available

...

drill

...

diameter.

...


The

...

initial

...

flow

...

rate

...

through

...

the

...

sludge

...

drain

...

is

...

calculated

...

using

...

the

...

Q.Orifice

...

equation

...

found

...

in

...

Fluids

...

Functions:

Latex
 Design Program]:
{latex}
\large
$$
Q_{SludgeDrainInitial}  = Pi_{VenaContractaOrifice} A_{SedSludgeOrifice} \sqrt {2gHW_{Sed} }
$$
{latex

The thickness and width of the drain cover are determined using geometry.

Latex

\large
$$
T_{SedSludge}  = T_{SedInletSlope} (1 + \sin (AN_{SedTopInlet} ))
$$

Determination of W.SedDrainCover:

Latex
}
The initial flow rate is then used to calculate the total time needed to empty the sludge drain:
{latex}
\large
$$
TimeW_{SludgeDrainSedDrainCover}  = {{2LW_{SedSedSludgeFlat} {{W  + 2_{SedWSedSludgeSF} } \over+ 2{N_{SlopePairs} }}HW{T_{SedSedInletSlope} } \over {Q_{SludgeDrainInitial} N\sin (AN_{SedSludgeOrificesSedTopInlet} )}}
$$
{latex



Wiki Markup
{float:left|border=2px solid black}
[!bottomsedtank.png!|^bottomsedtank.png]|width=800px!
{float}