Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin
Wiki Markup
{float:right|border=2px solid black|width=300px}
!Non Linear Doser Diagram.jpg|width=300px, align=centrecenter!
h5. Illustration of non-linear chemical doser
{float}

h3. Introduction

The 

Introduction

The non-linear

...

dose

...

controller

...

was

...

redesigned

...

in

...

order

...

to

...

reduce

...

the

...

amount

...

of

...

aeration

...

caused

...

as

...

water

...

traveled

...

through

...

the

...

plant.

...

For

...

more

...

information

...

about

...

the

...

theory

...

of

...

the

...

non-linear

...

dose

...

controller

...

see

...

the

...

page

...

for

...

the

...

original

...

non-linear

...

CDC

...

design.

Methods

Sizing the Orifice

The orifice between the rapid mix and flocculation tanks is designed to produce a difference in water level high that can then be sensed by a float which would then change the flow rate of aluminum sulfate:

Latex
|Nonlinear Chemical Dose Controller]. +(How was it designed? What were important components?)+

h3. Methods


h4. Sizing the Orifice

The orifice between the rapid mix and floculation tanks is designed to produce a difference in water level high that can then be sensed by a float which would then change the flow rate of aluminum sulfate:
{latex}$$
\Delta H = K_{_{orifice} } {{V_{jet} ^2 } \over {2*g}}
$$
{latex}
where
* {latex}

where

  • Latex
    $$
    \Delta H
    $$

...

  • is

...

  • the

...

  • difference

...

  • in

...

  • head

...

  • loss

...

  • between

...

  • the

...

  • rapid

...

  • mix

...

  • and

...

  • flocculation

...

  • tank
  • K orifice is the required minor loss coefficient through the orifice
  • V jet is the velocity in the dosing tube

This head loss was then used to determine the velocity of the water through the orifice and the residence time. Using the following equations:

Velocity of Jets:

Latex

* K ~orifice~ is the required minor loss coefficient through the orifice
* V ~jet~ is the velocity in the dosing tube

This head loss was then used to determine the velocity of the water through the orifice and the residence time. +(Why?)+ Using the following equations:

Velocity of Jets:
{latex}
$$V_{jet} = {Q \over {C_d *A_{orifice} }}
$${latex}
where
* V ~jet~ is the velocity of the jet
* Q is the flow rate through the system
* C ~d~ is the vena contracta coefficient for exit condition in orifice
* A ~orifice~ is the area of the orifice

Residence time :
{latex}

where

  • V jet is the velocity of the jet
  • Q is the flow rate through the system
  • C d is the vena contracta coefficient for exit condition in orifice
  • A orifice is the area of the orifice

Residence time :

Latex
$$
\theta = {{d_{orifice} } \over {V_{jet} }}
$${latex}
where
* {latex}

where

  • Latex
     $$
    \theta
    $$ 

...

  • is

...

  • the

...

  • residence

...

  • time
  • d orifice is the diameter of the orifice
  • V jet is the velocity of the jet

Once these values were determined, we were able to calculate the energy dissipation rate using the following equation:

Latex


* d ~orifice~ is the diameter of the oricifice
* V ~jet~ is the velocity of the jet

Once these values were determined, we were able to calculate the energy dissipation rate using the following equation:
{latex}$$
\varepsilon = {{g*\Delta H} \over \theta }
$${latex}
where
* {latex}

where

  • Latex
    $$
    \varepsilon
    $$

...

  • is

...

  • the

...

  • energy

...

  • dissipation

...

  • rate

...

  • g

...

  • is

...

  • gravity

...

  • Latex
    $$
    \Delta H
    $$

...

  • is

...

  • the

...

  • head

...

  • loss

...

  • Latex
    $$
    \theta
    $$

...

  • is

...

  • the

...

  • residence

...

  • time

...

We

...

sought

...

to

...

keep

...

the

...

energy

...

dissipation

...

rate

...

between

...

.5

...

and

...

1

...

W/kg

...

so

...

that

...

molecular

...

scale

...

diffusion

...

works

...

and

...

in

...

order

...

for

...

small

...

scale

...

turbulent

...

mixing

...

to

...

be

...

effective.

...

Lever

...

Arm

...

and

...

Float

...

We

...

first

...

must

...

determine

...

the

...

size

...

of

...

the

...

counterweight

...

on

...

the

...

doser

...

arm

...

in

...

order

...

to

...

ensure

...

that

...

the

...

dosage

...

will

...

only

...

be

...

a

...

function

...

of

...

the

...

difference

...

in

...

water

...

height

...

in

...

the

...

flocculation

...

and

...

rapid

...

mix

...

tanks.

...

The

...

mass

...

of

...

the

...

weight

...

is

...

calculated

...

by

...

determining

...

the

...

mass

...

of

...

the

...

doser

...

when

...

full.

{
Latex
}$$
m_{doserful} = [({{.375in} \over 2})^2 *\pi *25cm + ({{D_{actual} } \over 2})^2 *\pi *1m]\rho _{water} + m_{doser}
$${latex}
where
* D ~actual~ is the difference between the given diameter of the dosing tube and the measured diameter of the dosing tube
* {latex}

where

  • D actual is the difference between the given diameter of the dosing tube and the measured diameter of the dosing tube
  • Latex
    $$
    \rho _{water}
    $$

...

  • is

...

  • the

...

  • density

...

  • of

...

  • water

...

  • Latex
    $$
    m_{doser}
    $$

...

  • is

...

  • the

...

  • mass

...

  • of

...

  • the

...

  • doser

...

  • empty

...

The

...

size

...

of

...

the

...

float

...

can

...

be

...

determined

...

using

...

a

...

moment

...

balance

...

around

...

the

...

pivot

...

of

...

the

...

lever

...

arm.

...

This

...

is

...

to

...

ensure

...

that

...

a

...

change

...

in

...

head

...

in

...

the

...

entrance

...

tank

...

will

...

cause

...

a

...

similar

...

change

...

in

...

the

...

relative

...

height

...

of

...

the

...

float.

...

The

...

float

...

was

...

sized

...

using

...

the

...

same

...

float

...

sizing

...

algorithm

...

used

...

by

...

the

...

linear

...

CDC.

...

Based

...

on

...

this

...

we

...

found

...

that

...

a

...

float

...

of

...

13.3

...

inches

...

would

...

theoretically

...

be

...

able

...

to

...

measure

...

a

...

.25cm

...

height

...

difference.

Conclusion

Based on our calculations, we found that an orifice of 8cm would give us an acceptable energy dissipation rate of .927 W/kg and would require a 13.3in float. This float would have a .25cm sensitivity over a 15.2cm height difference.

Wiki Markup


h3. Conclusion

Based on our calculations, we found that an orifice of 8cm would give us an acceptable energy dissipation rate of .927 W/kg and would require a 13.3in float. This float would have a .25cm sensitivity over a 20.3cm height difference.
{float:left|border=2px solid black|width=300px}
Non Linear Doser Diagram!head loss vs flow rate.jpg|width=300px, align=centrecenter!
h5. Graph showing the non-linear relationship between the head loss vs. the flow rate through a 8cm diameter orifice
{float}

Additionally we found 2 solutions with multiple orifices. We did this because more orifices at a smaller diameter will keep energy dissepation constant while increasing overall headloss across the system. The first solution gave us 8 orifices with a 4.5cm diameter and a minimum energy dissipation rate of .831.

Wiki Markup

{float:left|border=2px solid black|width=300px}
!8 orifices.jpg|width=300px, align=centrecenter!
h5. Graph showing the non-linear relationship between the head loss vs. the flow rate through eight 4.5cm diameter orifices
{float}

The second solution gave us 175 orifices with a 2 cm diameter and a minimum energy dissipation rate of .496.

Wiki Markup

{float:left|border=2px solid black|width=300px}
!175 orifices.jpg|width=300px, align=centrecenter!
h5. Graph showing the non-linear relationship between the head loss vs. the flow rate through 175 2cm diameter orifices
{float}
+(Include a section about how you can make these equations scalable for larger and smaller plant sizes.)+