Panel |
---|
UNDER CONSTRUCTION Author: Daniel Kantor and Andrew Einstein, Cornell University Problem Specification |
Problem Specification
The purpose of this tutorial is to illustrate the setup and solution of a turbulent flow past a sphere. Flow past a sphere is one of the classical problems of fluid mechanics. For this problem, we will be looking at Reynolds number of 1.14E6.
Latex |
---|
Wiki Markup |
{panel} Author: Rajesh Bhaskaran & Yong Sheng Khoo, Cornell University {color:#ff0000}{*}Problem Specification{*}{color} [1. Create Geometry in GAMBIT|FLUENT - Steady Flow Past a Cylinder - Step 1] [2. Mesh Geometry in GAMBIT|FLUENT - Steady Flow Past a Cylinder - Step 2] [3. Specify Boundary Types in GAMBIT|FLUENT - Steady Flow Past a Cylinder - Step 3] [4. Set Up Problem in FLUENT|FLUENT - Steady Flow Past a Cylinder - Step 4] [5. Solve\!|FLUENT - Steady Flow Past a Cylinder - Step 5] [6. Analyze Results|FLUENT - Steady Flow Past a Cylinder - Step 6] [7. Refine Mesh|FLUENT - Steady Flow Past a Cylinder - Step 7] [Problem 1|FLUENT - Steady Flow Past a Cylinder - Problem 1] [Problem 2|FLUENT - Steady Flow Past a Cylinder - Problem 2] {panel} h2. Problem Specification !pb_img001.jpg! The purpose of this tutorial is to illustrate the setup and solution of a steady flow past a circular cylinder. Flow past a circular cylinder is one of the classical problems of fluid mechanics. For this problem, we will be looking at Reynolds number of 20. {latex} \large $$ {Re} = {\rho VD \over \mu} $$ {latex} |
We
...
know
...
D
...
=
...
6.
...
To
...
obtain
...
Re
...
= 1.14E6, we can arbitrarily set ρ, V and μ, but will use the standard values in Fluent. For our case, let's set ρ = 1.225 kg/m 3 , V = 2.7754 m/s and μ = 1.7894E-05 kg/ms.
Preliminary Analysis
For Re = 1.14E6, we are looking at turbulent flow. What will be the velocity profile of this flow? What will be the drag coefficient of the sphere? What will be the pressure coefficient around sphere? How will the streamlines around sphere look?
Let's start the modeling in our quest to find out the answer!
We'll create the geometry and mesh in GAMBIT which is the preprocessor for FLUENT, and then read the mesh into FLUENT and solve for the flow solution.
Go to Step 1: Create Geometry in GAMBIT