Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin
Panel

Author: Rajesh Bhaskaran, Cornell University

Problem Specification
1. Create Geometry in GAMBIT
2. Mesh Geometry in GAMBIT
3. Specify Boundary Types in GAMBIT
4. Set Up Problem in FLUENT
5. Solve!
6. Analyze Results
7. Refine Mesh
Problem 1
Problem 2

...

Consider fluid flowing through a circular pipe of constant cross-section. The pipe diameter D = 0.2 m and length L = 8 m. The inlet velocity Ūz = 1 m/s. Consider the velocity to be constant over the inlet cross-section. The fluid exhausts into the ambient atmosphere which is at a pressure of 1 atm. Take density ρ = 1 kg/ m3 and coefficient of viscosity µ = 2 x 10-3 kg/(ms). The Reynolds number Re based on the pipe diameter is

Latex
Wiki Markup
{latex}
\large
$$
{Re} = {\rho {\bar{U}}_zD \over \mu} = 100
$$
{latex}

where Ūz is the average velocity at the inlet, which is 1 m/s in this case.

...