Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Include Page
Forced Convection - Panel
Forced Convection - Panel
Include Page
FLUENT Google Analytics
FLUENT Google Analytics

Numerical Results

Note

To Cornell MAE 4272 Students: You Fall 2020: For the canvas quiz, you should use the FLUENT inputs from this tutorial. Later, you will need to repeat the FLUENT simulation with inputs from YOUR MEASUREMENTS in the lab and compare the FLUENT results with the experiment.

Some of the results shown below were obtained with a pipe length of 6.096 which is slightly different from the current length of 6.045. So your results might be slightly different from those shown below. 

Temperature Contour

HTML
<iframe width="560" height="315" src="https://www.youtube.com/embed/7_P7arvK-4Q?rel=0" frameborder="0" allowfullscreen></iframe>

...

Using the above equation, calculate the mixed mean temperature Tm at x=2.67 m. Remember to add the inlet temperature, otherwise you will just end up with the temperature difference between the mixed mean temperature and the inlet temperature (where we assumed the flow was fully mixed). An alternate procedure to calculate Tm involves integrating the temperature profile. This procedure is covered in the Verification & Validation section in the video entitled Check Energy Conservation via Mixed Mean Temperature Variation. If energy is conserved in the FLUENT simulation, the values calculated using the two procedures should match.

...

The wall heat flux on the left hand side is known from the boundary condition. We have shown you how to get the wall temperature T_w at an axial location. Calculate the mixed mean temperature at the same axial location by evaluating the following integral using the procedure shown in the video in the Verification and Validation section. The title of the video is Check Energy Conservation via Mixed Mean Temperature Variation

Once you determine h, you can non-dimensionalize it to get the Nusselt number.

...