Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

...

Initial

...

Research:

...

In

...

order

...

to

...

help

...

us

...

develop

...

our

...

clear

...

well

...

design,

...

we

...

conducted

...

extensive

...

literature

...

and

...

online

...

research

...

on

...

granular

...

filtration

...

and

...

backwash.

...

We

...

found

...

"Surface

...

Water

...

Treatment

...

for

...

Communities

...

in

...

Developing

...

Countries"

...

by

...

Christopher

...

R.

...

Schulz

...

and

...

Daniel

...

A.

...

Okun

...

and

...

"Physicochemcial

...

Processes

...

for

...

Water

...

Quality

...

Control"

...

by

...

Walter

...

J.

...

Weber,

...

Jr.

...

to

...

be

...

the

...

two

...

most

...

useful

...

sources

...

of

...

information

...

in

...

our

...

research.

...

"Surface

...

Water

...

Treatment

...

for

...

Communities

...

in

...

Developing

...

Countries"

...

From

...

Christopher

...

R.

...

Schulz

...

and

...

Daniel

...

A.

...

Okun,

...

we

...

learned

...

the

...

following

...

useful

...

information

...

with

...

regards

...

to

...

filtration:

...


...

Filtration

...

is

...

the

...

separation

...

of

...

suspended

...

impurities

...

from

...

water

...

by

...

passage

...

through

...

porous

...

media.

...


...

Slow

...

sand

...

filtration

...

consists

...

of

...

slowly

...

filtering

...

water

...

through

...

a

...

layer

...

of

...

ungraded

...

fine

...

sand.

...

Periodically,

...

the

...

top

...

layer

...

is

...

clogged

...

by

...

impurities

...

and

...

is

...

skimmed

...

off

...

the

...

top.

...


...

Rapid

...

sand

...

filtration

...

rapidly

...

conducts

...

filtration

...

in

...

depth

...

as

...

compared

...

to

...

the

...

slow

...

sand

...

filter

...

which

...

uses

...

only

...

the

...

top

...

layer

...

to

...

capture

...

suspended

...

particles.

...

A

...

lighter

...

anthracite

...

coal

...

layer

...

with

...

larger

...

pore

...

spaces

...

than

...

sand

...

is

...

used

...

on

...

top

...

of

...

a

...

sand

...

layer

...

to

...

capture

...

larger

...

particles

...

while

...

allowing

...

the

...

smaller

...

particles

...

passage

...

to

...

be

...

captured

...

by

...

the

...

lower

...

sand

...

layer.

...


...

Backwashing

...

is

...

the

...

act

...

of

...

removing

...

the

...

captured

...

impurities

...

in

...

the

...

filter

...

bed

...

by

...

introducing

...

enough

...

water,

...

usually

...

from

...

the

...

effluent

...

end,

...

to

...

fluidize

...

and

...

expand

...

the

...

bed

...

and

...

wash

...

away

...

the

...

now

...

released

...

impurities.

...

Backwashing

...

is

...

an

...

art.

...

There

...

is

...

neither

...

a

...

set

...

time

...

nor

...

a

...

set

...

amount

...

of

...

backwash

...

water

...

required.

...

If

...

a

...

filter

...

is

...

heavily

...

clogged,

...

significant

...

length

...

of

...

backwash

...

and

...

greater

...

backwash

...

water

...

for

...

greater

...

bed

...

expansion

...

are

...

required.

...

If

...

the

...

influent

...

water

...

is

...

relatively

...

low

...

in

...

NTU,

...

less

...

clogging

...

may

...

occur

...

and

...

a

...

shorter

...

backwash

...

and

...

less

...

water

...

may

...

be

...

required.

...

Consequently,

...

rapid

...

filtration

...

and

...

required

...

backwash

...

operations

...

necessitate

...

a

...

well

...

trained

...

crew

...

of

...

operators.

...

This

...

finding

...

leads

...

us

...

to

...

define

...

our

...

objective

...

as

...

not

...

only

...

providing

...

a

...

clear

...

well

...

design

...

that

...

works

...

but

...

a

...

set

...

of

...

instructions

...

in

...

operating

...

that

...

design.

...


...

Headloss

...

via

...

expanded

...

media

...

can

...

be

...

calculated

...

as

...

below:

{
Latex
}
\large
$$
h = D(1 - f)(p - 1)
$$
{latex}

where:

...


h

...

=

...

headloss

...

across

...

the

...

fluidized

...

bed

...

(m)

...


D

...

=

...

unexpanded

...

bed

...

depth

...

(m)

...


f

...

=

...

porosity

...

of

...

unexpanded

...

bed

...

(dimensionless)

...


p

...

=

...

specific

...

gravity

...

of

...

the

...

filter

...

medium

...

(dimensionless)

...


Once

...

fluidized,

...

headloss

...

through

...

an

...

expanded

...

bed

...

is

...

constant.

...

"Physicochemcial

...

Processes

...

for

...

Water

...

Quality

...

Control"

...

From

...

Walter

...

J.

...

Weber,

...

Jr.,

...

we

...

learned

...

the

...

following

...

useful

...

information

...

with

...

regards

...

to

...

filtration.

...

These

...

are

...

empiricial

...

equations

...

for

...

calculating

...

the

...

minimum

...

velocity

...

to

...

fluidize

...

a

...

filter

...

bed

...

for

...

backwash

...

and

...

the

...

velocity

...

required

...

for

...

a

...

specific

...

degree

...

of

...

bed

...

expansion.

...

...

Minimal

...

Fluidization

...

Velocity

...

Equation:

{
Latex
}
\large
$$
V_f  = {{0.00381(d_{60} ){}^{1.82}\{ \omega _s (\omega _m  - \omega _s )\} ^{0.94} } \over {\mu ^{0.88} }}
$$

where

Latex
{latex}
where

{latex}\large$$V_f $${latex}

=

...

fluidization

...

velocity,

...

gpm/square

...

feet

{
Latex
}\large$$\omega _s $${latex}

=

...

specific

...

weight

...

of

...

water,

...

lb/cubic

...

feet

{
Latex
}\large$$\omega _s $${latex}

=

...

specific

...

weight

...

of

...

water,

...

lb/cubic

...

feet

{
Latex
}\large$$d_{60}$${latex}

=

...

diameter

...

of

...

which

...

60%

...

of

...

the

...

media

...

is

...

equal

...

to

...

or

...

smaller,

...

mm

{
Latex
}\large$$\mu $${latex}

=

...

viscosity

...

of

...

water,

...

centipose

...


...

Bed

...

Expansion

...

Equation:

{
Latex
}
\large
$$
\overline \varepsilon   = 1 - {D \over {D_e }}(1 - \varepsilon )
$$
{latex}
where

where

Latex


{latex}\large$$\overline \varepsilon$${latex}

=

...

porosity

...

of

...

expanded

...

bed

{
Latex
}\large$$\varepsilon $${latex}

=

...

porosity

...

of

...

unexpanded

...

bed

...


D

...

=

...

depth

...

of

...

unexpanded

...

bed

{
Latex
}\large$$D_e$${latex}

=

...

depth

...

of

...

expanded

...

bed

...


...

Fluidization

...

Velocity

...

Equation:

{
Latex
}
\large
$$
V = K_e (\overline \varepsilon  )^{n_e }
$$
{latex}
where

V = fluidization velocity

where

V = fluidization velocity

Latex

{latex}\large$$K_e,n_e$${latex}

=

...

Constants

...

derived

...

experimentally

...

or

...

empirically

...

as

...

shown

...

below

Latex

\\
{latex}\large$$
n_e  = 4.45{\mathop{\rm Re}\nolimits} _0^{ - 0.1}
$$
{latex}
where
{latex}

where

Latex
\large$$
{\mathop{\rm Re}\nolimits} _0  = {{\rho _l  \cdot 8.45 \cdot V_f  \cdot d_{60} } \over \mu }
$$
{latex}

where:

...


μ

...

= the

...

dynamic

...

viscosity

...

of

...

the

...

fluid

...

(Pa

...

-

...

s

...

or

...

N

...

-

...

s/m²

...

or

...

kg/m

...

-

...

s)

...


p=

...

density

...

of

...

the

...

fluid

...

(kg/m^3)
d60= the particle diameter at which 60% of the particles are smaller or equal to.
Vf= minimum fluidization velocity of the media

and

Latex



and
{latex}\large$$
K_e  = {{V_f } \over {\varepsilon ^{n_e } }}
$$
{latex}