Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  • Divide the work up amongst you: while we want everyone to have experience with the ANSYS portion as well as the analytical, I would highly recommend assigning a couple people to each task, and then reviewing everything as a group when you write your paper and presentation.
  • Even though in the homeworks we have usually compared the analytical portion directly to the numerical results by uploading a CSV, this isn't necessarily required for the project. Instead, compare trends like velocity profiles or concentration distributions, and think about how they should match up.
  • As always, with any aspects of the project, email me with any questions you might have, and definitely come to office hours if you get the chance!
  • Anyone working with diffusion should keep the heat-mass diffusion analog in mind. In order to properly use the Energy model in ANSYS to solve mass diffusiom problems, you'll need to change the thermal properties such that you get the diffusivity you're looking for. It was touched on in HW 3, but you'll need to use the following equation:

Image Added

  • Since density is an important property for the fluid flow equations, it needs to be accurate to the fluid. However, both thermal comductivity (k) and heat capacity (Cp) can be changed arbitrarily to achieve a certain Alpha. This alpha is analagous to solute diffusivity, i.e. the diffusion coefficient.
Project 1: Shear Stress Bioreactor

...