Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Panel

Problem Specification
1. Start-up and preliminary set-up
2. Specify element type and constants
3. Specify material properties
4. Specify geometry
5. Mesh geometry
6. Specify boundary conditions
7. Solve!
8. Postprocess the results
9. Validate the results

Step 9: Validate the results

Simple Checks

Does the deformed shape look reasonable and agree with the applied BCs? We checked this in step 8.

...

There are no applied forces in this problem, so the total reaction force should be zero for equilibrium. The total reaction force in the radial direction (FX) is 4.6 N which is close to zero. We can lower it even further by refining our estimate of rc. The total reaction forces FY in the cirumferential direction and FZ in the axial direction are small but not zero. This is possible because FX is small but not zero. So the structure is in equilibrium to a reasonable degree of approximation.

Refine Mesh

Let's repeat the calculations on a mesh with twice the no. of mesh divisions in the radial and axial directions while retaining a single division on AC and BD. We need to reset NDIV and SPACE on the following lines:

...

After reapplying the BCs, solve the problem as in step7.

Plot Circumferential Stress

Display theσθstress distribution over face 1:

...

Select Stress from the left list, Y-direction SY from the right list and click OK.

 
(Click Picture for Larger Image)

Compare this result with the plot obtained on the coarser mesh. The results on the two meshes compare well indicating that the coarse mesh provides good resolution. Similarly, compare the von Mises stress results on the two meshes.

Exit ANSYS

Utility Menu > File > Exit

Select Save Everything and click OK.

Reference

Cook, R.D., Malkus, D.S., Plesha, M.E., and Witt, R.J., Concepts and Applications of Finite Element Analysis, Fourth Edition, John Wiley and Sons, Inc., 2002.

...