Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  • Mathematical model: (e.g.: We'll look at the governing equations + boundary conditions and the assumptions contained within the mathematical model.)
  • Numerical solution procedure in ANSYS: (e.g.: We'll briefly overview the solution strategy used by ANSYS and contrast it to the hand calculation approach.)
  • Hand-calculations of expected results: (e.g.: We'll use an analytical solution of the mathematical model to predict the expected stress field from ANSYS. We'll pay close attention to additional assumptions that have to be made in order to obtain an analytical solution.)

Mathematical Model 

IS THE SAME AS PART 1?Similar as before, but considering a rotating frame of reference for the hub.

In part 1 we only analyzed one position of the hub relative to the incoming wind, which might be an over-simplification. We also didn't account for the vortices generated by the blades passing upwind on the blades downstream.

All of these will be accounted in this Sliding Mesh method. In this case Fluent will actually move all components of the geometry and solve a transient problem. 

Note

Under Construction

Numerical Solution Procedure in ANSYS

Note

Under Construction

Hand-Calculations of Expected Results

...

Similar as part 1, but now Fluent will iterate in each time step until it either converged, or reached the maximum iterations per time step defined by the user.

Expected Results

We expect a similar distribution of Velocity, Vorticity and Turbulent KE and before. We also expect the Moment coefficient to be oscillatory.

Start-Up

HTML
<iframe width="640" height="360" src="//www.youtube.com/embed/wdYheG2l2-4" frameborder="0" allowfullscreen></iframe>

...