Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migrated to Confluence 4.0

...

Data

...

Acquisition

...

The

...

Flocculator

...

Residual

...

Turbidity

...

Analyzer

...

(FReTA)

...

allows

...

us

...

to

...

gather

...

data

...

and

...

investigate

...

a

...

number

...

of

...

different

...

factors

...

affecting

...

flocculator

...

performance,

...

including

...

shear

...

(G),

...

residence

...

time

...

(θ),

...

alum

...

dose,

...

and

...

influent

...

turbidity.

...

The

...

shear

...

rate

...

in

...

the

...

flocculator

...

can

...

be

...

controlled

...

in

...

Process

...

Controller

...

by

...

either

...

holding

...

constant

...

or

...

varying

...

the

...

plant

...

flow

...

rate

...

as

...

desired.

...

A

...

given

...

flow

...

rate

...

will

...

define

...

a

...

particular

...

shear

...

rate

...

in

...

the

...

flocculator.

...

The

...

shear

...

rates

...

in

...

the

...

tube

...

flocculator

...

can

...

be

...

calculated

...

from

...

flow

...

rates

...

and

...

other

...

characteristics

...

of

...

the

...

setup

...

using

...

the

...

following

...

equations:

...

The

...

following

...

equations

...

and

...

methods

...

were

...

developed

...

to

...

describe

...

shear

...

in

...

FReTA

...

by

...

Ian

...

Tse

...

in

...

his

...

thesis:

...

Fluid

...

shear

...

influences

...

on

...

hydraulic

...

flocculation

...

systems

...

characterized

...

using

...

a

...

newly

...

developed

...

method

...

for

...

quantitative

...

analysis

...

of

...

flocculation performance

Based on dimensional analysis, the velocity gradient G can be expressed as a function of the average energy dissipation rate (ε) and kinematic viscosity of the fluid (ν):

Wiki Markup
 performance_|Tube Floc Data Acquisition^Ian Tse MS Thesis.doc]_

_Based on dimensional analysis, the velocity gradient G can be expressed as a function of the average energy dissipation rate (ε) and kinematic viscosity of the fluid (ν):_
{latex}
\large
$$
G = \sqrt {{\varepsilon  \over \nu }}
$$
{latex}
_

(1.3)

...


Using

...

conservation

...

of

...

energy,

...

ε

...

can

...

be

...

expressed

...

as

...

kinetic

...

energy

...

loss

...

over

...

a

...

period

...

of

...

time:

Wiki Markup
_
{latex}
\large
$$
\varepsilon  = {{gh_L } \over \theta }
$$
{latex}
_

(1.4)

...


where:

...

g

...

is

...

gravitational

...

acceleration,

...

hL

...

is

...

head

...

loss

...

and

...

θ

...

is

...

average

...

hydraulic

...

residence

...

time.

...


The

...

head

...

loss

...

through

...

a

...

straight

...

tube

...

can,

...

in

...

turn,

...

be

...

defined

...

as

...

(Robertson

...

et

...

al,

...

1993):

Wiki Markup
_
{latex}
\large
$$
h_L  = f_s {L \over d}{{U^2 } \over {2g}}
$$
{latex}
_

(1.5)

...


where:

...

L

...

is

...

the

...

length

...

of

...

the

...

flocculator

...

and

...

fs

...

is

...

the

...

friction

...

factor

...

in

...

a

...

straight

...

tube.

...

For

...

laminar

...

flow,

...

the

...

friction

...

factor

...

fs

...

=

...

64/Red,

...

and

...

Red

...

is

...

the

...

Reynolds

...

number

...

as

...

defined

...

as:

Wiki Markup
_
{latex}
\large
$$
{\mathop{\rm Re}\nolimits} _d  = {{Ud} \over \nu }
$$
{latex}
_

(1.6)

...


where:

...

U

...

is

...

the

...

average

...

axial

...

velocity

...

and

...

d

...

is

...

the

...

tube

...

inner

...

diameter.

...


The

...

formulation

...

for

...

G

...

derived

...

by

...

Gregory

...

(1981)

...

(see

...

Equation

...

1.2)

...

can

...

also

...

be

...

derived

...

from

...

algebraic

...

rearrangement

...

of

...

Equations

...

1.3-1.6.

...

A

...

correlation

...

factor

...

(Mishra

...

&

...

Gupta

...

1979)

...

can

...

be

...

applied

...

to

...

Equation

...

1.7

...

to

...

replace

...

fs

...

with

...

fc

...

and

...

correct

...

for

...

the

...

differences

...

in

...

head

...

loss

...

between

...

straight

...

and

...

curved

...

tubes.

Wiki Markup
_
{latex}
\large
$$
{{f_c } \over {f_s }} = 1 + 0.033\log \left( {De} \right)^4
$$
{latex}
_

(1.7)

...


where:

...

De

...

is

...

the

...

nondimensional

...

Dean

...

Number

...

and

...

characterizes

...

the

...

effect

...

of

...

curvature

...

on

...

fluid

...

flow:

Wiki Markup
_
{latex}
\large
$$
De = \sqrt {{r \over {R_c }}} {\mathop{\rm Re}\nolimits} _d
$$
{latex}
_

(1.8)

...


where:

...

r

...

is

...

the

...

inner

...

radius

...

of

...

the

...

tube,

...

Rc

...

is

...

the

...

radius

...

of

...

curvature.

...


The

...

average

...

head

...

loss

...

measured

...

as

...

the

...

pressure

...

drop

...

across

...

the

...

tube

...

flocculator

...

was

...

within

...

2%

...

of

...

the

...

head

...

loss

...

calculated

...

using

...

Equations

...

1.5

...

and

...

1.7

...

(Figure

...

1.4).

...

The

...

figure

...

eight

...

coil

...

configuration

...

used

...

in

...

this

...

research

...

was

...

different

...

from

...

the

...

flow

...

regime

...

modeled

...

by

...

Mishra

...

and

...

Gupta.

...

The

...

fact

...

that

...

our

...

data

...

agrees

...

with

...

their

...

model

...

suggests

...

that

...

the

...

change

...

in

...

direction

...

of

...

the

...

coil

...

had

...

only

...

a

...

small

...

effect

...

on

...

total

...

head

...

loss.

...

The

...

following

...

G

...

value

...

obtained

...

from

...

combining

...

Equations

...

1.3-1.8

...

was

...

used

...

to

...

design

...

the

...

experimental

...

runs.

Wiki Markup
_
{latex}
\large
$$
G_c  = G_s \left( {1 + 0.033\log \left( {De} \right)^4 } \right)^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 2}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$2$}}}
$$
{latex}
_

(1.9)

...

We

...

can

...

also

...

study

...

the

...

effect

...

of

...

increasing

...

the

...

residence

...

time

...

in

...

the

...

flocculator

...

and

...

holding

...

shear

...

constant

...

by

...

increasing

...

the

...

length

...

of

...

the

...

flocculator

...

while

...

holding

...

the

...

flow

...

rate

...

constant;

...

this

...

will

...

increase

...

the

...

amount

...

of

...

time

...

water

...

spends

...

in

...

the

...

flocculator

...

without

...

changing

...

the

...

shear

...

rate.

...

Currently,

...

setup

...

can

...

easily

...

be

...

modified

...

to

...

handle

...

three

...

different

...

flocculator

...

lengths,

...

27.96

...

m,

...

55.92

...

m,

...

and

...

83.88

...

m.

...

Process

...

Controller

...

can

...

also

...

be

...

used

...

to

...

vary

...

alum

...

dosage,

...

and

...

set

...

the

...

desired

...

influent

...

turbidity

...

for

...

the

...

raw

...

water.

...

This

...

allows

...

us

...

complete

...

control

...

over

...

what

...

enters

...

the

...

flocculator,

...

how

...

long

...

it

...

spends

...

in

...

the

...

flocculator,

...

and

...

how

...

quickly

...

it

...

moves

...

through

...

the

...

flocculator.

...

When

...

running

...

an

...

experiment

...

on

...

FReTA,

...

we

...

allow

...

1.5-2

...

flocculator

...

residence

...

times

...

to

...

pass

...

before

...

collecting

...

data.

...

This

...

ensures

...

that

...

the

...

alum

...

has

...

the

...

necessary

...

time

...

to

...

react

...

with

...

the

...

clay

...

particles

...

in

...

order

...

to

...

produce

...

a

...

steady

...

state

...

distribution

...

of

...

flocs

...

at

...

the

...

end

...

of

...

the

...

flocculator.

...

After

...

this

...

loading

...

time,

...

Process

...

Controller

...

begins

...

the

...

actual

...

data

...

collection.

...

The

...

pumps

...

ramp

...

down

...

gradually,

...

and

...

a

...

ball

...

valve

...

is

...

used

...

to

...

seal

...

off

...

the

...

settling

...

column

...

(see

...

Apparatus

...

Setup

...

)

...

from

...

the

...

rest

...

of

...

the

...

flocculator

...

over

...

a

...

period

...

of

...

6

...

seconds.

...

The

...

reason

...

for

...

this

...

gradual

...

shut

...

down

...

is

...

to

...

prevent

...

turbulence

...

that

...

could

...

disrupt

...

flocs

...

in

...

the

...

settling

...

column.

...

Process

...

Controller

...

then

...

records

...

the

...

residual

...

turbidity

...

every

...

second

...

for

...

half

...

an

...

hour

...

(1800

...

s)

...

at

...

which

...

point

...

the

...

valves

...

open

...

to

...

begin

...

backwashing

...

for

...

a

...

new

...

run.

...

The

...

settling

...

velocities

...

corresponding

...

to

...

the

...

time

...

range

...

we

...

are

...

studying

...

are

...

calculated

...

by

...

dividing

...

the

...

distance

...

between

...

the

...

valve

...

and

...

the

...

effluent

...

turbiditmeter

...

in

...

the

...

settling

...

column

...

(16

...

cm)

...

by

...

the

...

time

...

since

...

settling

...

began.

...

Thus,

...

the

...

remaining

...

turbidity

...

after

...

10

...

s

...

of

...

settling

...

would

...

correspond

...

to

...

all

...

particles

...

with

...

a

...

settling

...

velocity

...

of

...

greater

...

than

...

1.6

...

cm/s.

...

We

...

are

...

not

...

interested

...

in

...

recording

...

data

...

after

...

half

...

an

...

hour

...

because

...

this

...

corresponds

...

to

...

extremely

...

low

...

settling

...

velocities

...

(>0.0889

...

mm/s).

...

Additionally,

...

we

...

define

...

residual

...

turbidity

...

as

...

the

...

turbidity

...

with

...

settling

...

velocity

...

less

...

than

...

0.12

...

mm/s.

...

This

...

is

...

the

...

capture

...

velocity

...

of

...

the

...

plate

...

settlers,

...

so

...

any

...

particles

...

with

...

lower

...

setting

...

velocities

...

will

...

exit

...

with

...

the

...

effluent.