Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Wiki Markup
h1. Chemical Dose Controller Design Program

This program will code for a general dose controller design and will incorporate the design into the Automated Design Tool. The doser design will be for a triple scale (three different orifices). See the [CDC research team page|Effect of Surface Tension] for a more detailed explanation of this.

\\ !FinalDoser.jpg|border=2px solid black,align=center,width=500pxpx|align=center,width=500pxpx,height=350pxpx!\\
{center:class=myclass}
h5. Figure 1: Doser Overview (CDC 2009-2010)
{center}

\\ \\ !DoserDraft.jpg|border=2px solid black,align=center,width=500pxpx|align=center,width=500pxpx,height=350pxpx!\\
{center:class=myclass}
h5. Figure 2: Doser Draft Design (CDC 2009-2010) 
{center}

h3. Design Process:

Expert Inputs:
HL.ChemDoserMin

User Inputs:
Q.Plant (HL.Plant)

Design Assumptions:
C.DoserScaleAlumMax

Code Calculations:
Constant head tank orifice size
Dosing tubes size to ensure orifice head loss is much greater than major loss in tubing


h3. Equations:

*Target Alum Concentration:*
{latex}
\large
$$
Q_{Alum}  = {{Q_P  \times C_T } \over {C_C }} $${latex}

Where,

{latex}\large$$Q_{Alum} $${latex}= Flow Rate of Alum Solution
{latex}\large$$Q_{P} $${latex}= Plant Flow Rate
{latex}\large$$C_{T} $${latex}= Target Alum Concentration
{latex}\large$$C_{C} $${latex}= Alum Concentration in the Stock Tank


*Orifice Equation:*
{latex}\large $$ Q = K_{vc} A_{or} \sqrt {2gh} $$ {latex}  


Where, \\
{latex}\large$$ Q large$$Q$${latex} = Flow Rate $$
{latex}

\large$$h$${latex}\large$$ h = Head Loss $${latex}

{latex}\large$$A_{or}$${latex} = Area of the Orifice $${latex}


{latex}\large$$K_{vc}$${latex}= Orifice Constant $${latex}



Rearranging the orifice equation,
Orifice Head Loss:
{latex}$$
h_{1Orifice}  = K_{DoseOrifice} {{V{Q\ over A_{DoseTubeor}}^2 } \over {2g}}
$${latex}


*Major Head Loss:*
{latex}$$
h_{Lmajor} = f {L\over {D}}{{V^2} \over {2g}}
$${latex}
Where, 
{latex}\large$$f$${latex} = friction factor (dependent on Reynold's number)
{latex}\large$$D$${latex} = diameter
{latex}\large$$V$${latex} = velocity (Q/A)


h3. Solution Process