Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Figure 4 illustrates the effect of the water contraction flowing through an orifice.

Image Modified

Figure 4. Diagram showing the area used for A.in in the Exit loss coefficient equation.

...

The area of the small scale orifice can be either cirucular or rectangular in shape, again depending upon the plant flow rate, desired energy dissipation rate, and desired head loss through the small-scale orifice. A diagram of some possbile orifice configurations is shown below in Figure 5. Each of these designs is preferred in different cases depending on the plant flow rate, pipe diameter, desired head loss, and desired energy dissipation rate. Tentatively, the Agalteca plant will feature a small-scale orifice featuring the multiple round orifices, which will best serve this plant in evenly mixing the aluminum sulfate dosed to the raw waste, as well as achieving the desired energy dissipation rate through the orifice. To calculate the dimensions of the round orifices that will occur in the small-scale mixing orifice, the following equation in used:

Image Added

Here, ε is the value of the maximum energy dissipation rate for the plant, and the orifice is thus designed to achieve this value. Δh is the same target value for the head loss from the small-scale orifice design equation. This equation thus calculates the maximum minimum dimension of a rectangular orifice. This dimension can be adapted to the proposed Agalteca design with multiple small orifices, however, because of the presence of many small orifices in entire small-scale mixing orifice. The dimension calculated in this equation will then be used as the diameter of the multiple orifices that must be put into the small-scale mixing orifice.

Conclusion

Future Work

Bibliography

...