Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Overview of Methods

     In these experiments , the alum concentration dosage supplied to the flocculation system was varied in order to study how a change in alum dose affects effluent turbidity from floc and floc blanket formation affect the effluent turbidity produced by the tube settler.  The experimental set-up is identical to the same as the one used in Spring 2009. From these results, the , and from our results we hope to analyze velocity gradient thresholds and effect of organic matter will be investigated with the intent to characterize the system in terms of tube settler possibly investigate how changing influent water chemistry affects the setter's efficiency.

Results and Discussion

     Using the Spring 2009 team's process controller methods, we subjected an ideal geometry to non-ideal conditions. Though the Spring 2009 team had success with a 9.5 mm diameter tube, due to a change in chemistry in the influent water during chemistry over the summer or the addition of a flow accumulator to the method, we experienced failure with this geometry. We achieved an acceptable effluent turbidity (less than 1 NTU) with a 15.1 mm diameter tube that had a length of 30.5 mm. With these the ideal results, we then subjected this tube settler to varying alum dosage to investigate the dependency of the performance of the tube settler on the alum dosagethis parameter. At each alum dosage, the tube settler was tested at a variety of capture velocities and at two different floc blanket levels.

...



Figure 1: Capture Velocity vs. Average Effluent Turbidity shown for each alum dose (35, 45, 65 mg/L) for the Floc Blanket on low


Figure 2: Capture Velocity vs. Average Effluent Turbidity shown for each alum dose (35, 45, 65 mg/L) for the Floc Blanket on high

Floc Blanket Height

Alum Dose (mg/L)

5 m/day

10 m/day

15 m/day

20 m/day

Low

35

.3136

.1799

.2353

.3093

High

35

.1457

.1535

1.278

.5889

Low

45

.7667

.7374

.9094

.8192

High

45

.5946

.6407

.8321

.5638

Low

65

.2155

.4129

.6635

.5637

High

65

.2446

.2414

.6634

.5637

...

Overall, the system performed well and most of the average effluent turbidities were below 1 NTU. The overdose of alum did cause the effluent turbidity to be slightly higher than the ideal dose, however it was still within the range of ideal effluent turbidity. It was expected that the 35 mg/L alum dose would perform poorly. However, this underdose dosage produced better results than the ideal alum dose, so further experiments are being performed to collect data with a lower alum dosestock concentration.