Problem Specification 1. Start-up and preliminary set-up 2. Specify element type and constants **3. Specify material properties** 4. Specify geometry 5. Mesh geometry 6. Specify boundary conditions 7. Solve! 8. Postprocess the results 9. Validate the results

Step 3: Specify material properties

Enter the Define Material Model Behavior menu

Select Main Menu > Preprocessor > Material Props > Material Models

In the Define Material Model Behavior menu, double-click on Structural, Linear, Elastic, and Isotropic.

Specify Material properties

Enter E for Young's modulus EX, nu for Poisson's Ratio PRXY.

	T1		
[emperatures			
EX	E		
'KAT			
CANADARIA DA	(1	

Click OK.

Double-click on *Density* under *Structural*.

∧ Define Material Model Behavior	<u>- 0 - 10 ×</u>	
Material Edit Help Material Models Defined	Material Models Available	
😰 Azenal Indel Juncha I 🛞 Linear Isotropic	▲	
<u> </u>		

Enter rho for DENS.

Density for Materia	Number 1		
Temperatures DENS rł	T1	ñ 8	
Add Temperature	Delete Tempe	rature	Graph
			<u> </u>

Click OK.

This completes the specification for Material Model #1. Close the Define Material Model Behavior menu.

Save your work

Click on the **SAVE_DB** button in the ANSYS Toolbar.

Go to Step 4: Specify geometry

Go to all ANSYS Learning Modules