Structures and Handles - Creating a structure for two elements

Author: Rajesh Bhaskaran, Cornell University
Overview

1. Creating a structure for one element
2. Creating a structure for two elements
3. Structure of handles

Comments

Creating a Structure for Two Elements

Extend to two elements

Let's now consider the case where we would like to create a structure to store the strain and stress values for two triangular elements.

The structure from Step 1 can be modified as per below to accommodate the second element.

We'll create the above structure by modifying the code from Step 1. Recall that the statements for creating the structure were

```
eps_val = [2 7 4]; %Nonsense values
R = 2*eye (3); %Dummy R
sig_val = (R*eps_val')'; %Derived nonsense
sigepsstruct = struct('eps', eps_val, ...
'sig', sig_val);
```

```
numels = 2;%Total number of elements
for iele = 1:numels
    stuff
{{}}
end
sigepsstruct = struct();
```

We will keep the R matrix calculation out of the loop (since it doesn't need to be recalculated each time anew). This leaves us with the eps_val, sig_val and sigepsstruct statements inside the loop. In a real calculation, the strain values for each element, or equivalently, the rows of the eps field, are going to be different. To make the rows of the epsfield different, we'll blithely multiply each row by the loop counter. This is again done to explain programming concepts; it makes no sense from a solid mechanics sense.

```
numels = 2;%Total number of elements
R = 2*eye(3); %Dummy R
for iele = 1:numels
    eps_val = iele*[2 7 4]; %Nonsense values
    sig_val = (R*eps_val')'; %Derived nonsense
end
```

Another thing: eps_val and sig_val above are row vectors. But the epsfield is a matrix. We'll create this matrix as follows: after each row of the matrix is calculated, we will "push" it into the appropriate row of the matrix. Let's call this matrix geps_val, the g prefix standing for global. The following assignment will push the current eps_val vector into the second row of the matrix.

```
geps_val(2, : ) = eps_val;
```

Chew over this and make sure you understand it. If need be, look up the help on the ":" operator. The matrix for the sig field can be created in a similar fashion. When using the struct function to create sigepsstruct, we now need to use the geps_val and gsig_val to assign values to the fields. The following code brings this all together.

Run your code and check the values in the Workspace. Once your code is working correctly, test extracting data from the structure.Note that you can look up the names of each field within the structure using the fieldnames() command.

```
%Extract data from structure
myeps = sigepsstruct.eps
sigxy2 = sigepsstruct.sig(2,3)
fieldnames(sigepsstruct)
```

Go to Step 3: Structure of handles
Go to all MATLAB Learning Modules

