Intro Learning Module - sigma_x for inner radius =1cm

Author: Rajesh Bhaskaran, Cornell University
Problem Specification

1. Find Reactions R_{A}, R_{B}
2. Calculate ${ }_{x}$ for $r_{i}=1 \mathrm{~cm}$
3. Plot ${ }_{x}$ vs. r_{i}
4. x vs. r_{i} (Take 2)
5. ${ }_{x}$ vs. r_{i} (Take 3: File Input/Output)
6. x_{x} vs. r_{i} (Take 4: Functions)

Tips
Comments

Calculate ${ }_{x}$ for $r_{i}=1 \mathrm{~cm}$

Remember elementary statics? It gives the bending stress at point O as

$$
\begin{aligned}
& \sigma_{x}=\frac{M y}{I} \quad y=r_{o} \\
& M=-600 \mathrm{Nm} \\
& I=\frac{\pi\left(r_{o}^{4}-r_{i}^{4}\right)}{4}
\end{aligned}
$$

Using my calculator, I get ${ }_{x}=-101.7 \mathrm{MPa}$. We'll check the MATLAB result against this value.

Calculate ${ }_{x}$ at point O

In your program, leave a blank line and start a new section for calculating ${ }_{x}$ at point O with an explanatory comment line. Then, create the parameters M, ro, and $r i$ since these are needed to calculate ${ }_{x}$.

$$
\begin{aligned}
& 5 \\
& 6 \\
& 7-M=-600 ; \\
& 8-r o=2 e-2 \\
& 9-r i=1 e-2
\end{aligned}
$$

Following this is the statement to calculate I, the moment of inertia:

$$
10-\mathrm{I}=\mathrm{pi}\left(\mathrm{ro}^{\wedge} 4-\mathrm{ri} \mathrm{c}^{\wedge}\right) / 4 ;
$$

Things to note: the parameter pi is predefined and contains a very accurate value of. The operator ${ }^{\wedge}$ is used to raise a quantity to a desired power. Now we can calculate ${ }_{x}$ at O :

$$
11 \text { - sigma_x }=1 e-6{ }^{\star} M^{\star} r o / I
$$

sigma_x =
-101.8592

This is close enough to my paper-and-pencil result of -101.7 MPa above. See my entire program here (right click and select save target as, or just left-click and copy-paste in the editor).

Go to Step 3: Plot ${ }_{x}$ vs. r_{i}
Go to all MATLAB Learning Modules

