ANSYS 12 - Beam - Step 4

Author: Rajesh Bhaskaran \& Yong Sheng Khoo, Cornell University
Problem Specification

1. Pre-Analysis \& Start-Up
2. Geometry
3. Mesh
4. Setup (Physics)
5. Solution
6. Results
7. Verification \& Validation

Step 4: Setup (Physics)

We need to specify point $B C$'s at A, B, C and D.

Let's start with setting up boundary condition at A.
Outline > Static Structural (A5) > Insert > Remote Displacement
Select point A in the Graphics window and click Apply next to Geometry under Details of "Remote Displacement". Enter 0 for all UX, UY, UZ, ROTX and ROTY except for ROTZ. Let ROTZ to be free.
Details of 'Remote Displacement"

Scope	
Scoping Method	Geometry Selection
Geometry	1 Vertex
Coordinate System	Global Coordinate System
$\square \mathrm{X}$ Coordinate	$0 . \mathrm{m}$
$\square \mathrm{Y}$ Coordinate	$0 . \mathrm{m}$
\square Z Coordinate	$0 . \mathrm{m}$
Location	Click to Change
Definition	
Type	Remote Displacement
$\square \mathrm{X}$ Component	$0 . \mathrm{m}$ (ramped)
$\square \mathrm{Y}$ Component	$0 . \mathrm{m}$ (ramped)
\square Z Component	$0 . \mathrm{m}$ (ramped)
\square Rotation X	$0 .{ }^{\circ}$ (ramped)
\square Rotation Y	$0 .{ }^{\circ}$ (ramped)
Rotation Z	Free
Suppressed	No

Let's move on to setting up boundary condition B.
Outline > Static Structural (A5) > Insert > Remote Displacement
Select point B in the Graphics window and click Apply next to Geometry under Details of "Displacement 2". Enter 0 for all UY, UZ, ROTX and ROTY except for ROTZ. Let UX and ROTZ to be free.

Details of "Remote Displacement 2"

\square	Scope
Scoping Method	Geometry Selection
Geometry	1 Vertex
Coordinate System	Global Coordinate System
\square X Coordinate	0.4 m
\square Y Coordinate	$0 . \mathrm{m}$
\square Z Coordinate	$0 . \mathrm{m}$
Location	Click to Change
Definition	
Type	Remote Displacement
X Component	Free
\square Y Component	$0 . \mathrm{m}$ (ramped)
\square Z Component	$0 . \mathrm{m}$ (ramped)
\square Rotation X	$0 .{ }^{\circ}$ (ramped)
\square Rotation Y	$0 .{ }^{\circ}$ (ramped)
Rotation Z	Free
Suppressed	No

We can move on to setting up point force at point C and D.
Outline > Static Structural (A5) > Insert > Force

Select point C in the Graphics window and click Apply next to Geometry under Details of "Force". Next to Define By, change Vector to Components. Enter-4000 for Y Component.

Details of "Force"			\square
\square Scope			
	Scoping Method	Geometry Selection	
	Geometry	1 Vertex	
\square	Definition		
	Type	Force	
	Define By	Components	
	Coordinate System	Global Coordinate System	
	$\square \mathrm{X}$ Component	0. N (ramped)	
	$\square \mathrm{Y}$ Component	-4000. N (ramped)	,
	Suppressed	No	

Do the same for point D.
Check that you have for all the boundary conditions. Click on Static Structural (A5) to view this in Graphics window.

Higher Resolution Image

Go to Step 5: Solution

See and rate the complete Learning Module
Go to all ANSYS Learning Modules

