
GDSII Scripting for Lithography

Why script your layout?
Preparations

Important note
Installing Python
Installing PHIDL

Scripting a GDSII file
Saving and running scripts
Basic grating
Basic array
Scaling arrays
Labelling
Circles and arcs
Layers
Using references
Moving the origin

Running on Korat and Minx
Alternatives to PHIDL
Tips and tricks

Why script your layout?
For most lithography work at CNF you should provide your designs in the GDSII format (). Direct-write tools, such as the JEOL EBL systems and the .gds
Heidelberg mask writers, use these layouts in their job files.

To create your layouts, you can use CAD software such as KLayout and LEdit, both of which are available on CNF workstations. KLayout is free and cross-
platform, so you can prepare your files ahead of time, before you come to CNF for fabrication. CAD software can handle complex shapes and large arrays,
and may be all you need for your purposes.

On occasion, however, you may find that it is tedious to draw your layout in an editor, for example because you need a large number of different shapes,
or because elements are irregularly distributed, or simply because the large number of steps involved makes mistakes likely. Scripting is a good alternative
in this cases. This page will show you how to do it in Python via the package.PHIDL

Preparations
You should know basic Python, including environment setup, command line use and package installation, although some of this is repeated below. If you
do not know any Python, it may still be worthwhile to learn if you plan to run several projects at CNF, and it is of course a useful language in many other
applications.

Important note

Pay close attention to specific machine requirements for GDSII files. A notable limitation is on polygon vertex number (the maximum supported by the
Heidelbergs is 199). If you require better detail than this can allow (most likely with curved shapes) you will need to break up your polygons in smaller
chunks.

Installing Python

Python is already installed on Korat and Minx.

You can download the latest from the official website, or use a package manager (for example, your distribution's default in Linux or Python release Homeb
 in macOS). Make sure is accessible by terminal. Using an IDE, such as (free), is recommended.rew python Visual Studio Code

If you manage multiple projects and are hesitant to modify your environment, you can for example use .pyenv

Installing PHIDL

Phidl is already installed on Korat and Minx. See the "Running on Korat and Minx" section below for more information.

Phidl is available with Python's package manager. In the command line use (you will first have to have installed the python devel packages from your pip
linux distribution):

pip3 install phidl

In addition to PHIDL, you may need maths packages to calculate your device's geometry. The most common such package is .numpy

https://pypi.org/project/phidl/
https://www.python.org/downloads/
https://brew.sh/
https://brew.sh/
https://code.visualstudio.com/
https://github.com/pyenv/pyenv

Note the above command requires root privileges as it will attempt to install phidl and requirements system-wide. Instead, we recommend you install into
your local home directory to avoid creating issues with the system python3 packages. use the following command:

pip3 install --user phidl

You will then need to add the install directory to your PYTHONPATH. Most likely, you will need to add the directory: ~/.local/lib/python3.6/site-packages

Scripting a GDSII file
Although this page should be sufficient to get you started, it's well worth it to have a look at the full PHIDL documentation. The are a great place to tutorials
learn its various functions. The lists all inbuilt geometry types, including important aids such as text and and lithography test structures. geometry reference
Make sure you go through its contents: the inbuilt types can save you a large amount of time.

The examples below are only one possible way of doing things. Refer to the documentation and find the way that works best for you.

Saving and running scripts

Save your scripts with the extension. You can run them in the command line with.py

python script.py

or, if you have installed,ipython

ipython
run script

Basic grating

We'll start by writing a script that creates a GDSII file containing a basic grating. First, the packages must be imported. For now, we only need to Device
create the layout and to view it.quickplot

from phidl import Device
from phidl import quickplot as qp

Then, we define our grating's dimensions. Note that, in all examples, dimensions are very much unrealistic and chosen for ease of viewing.

N_X = 10 # Number of lines
P_X = 2 # Grating period, um
W_X = 1 # Line width, um
W_Y = 20 # Line length, um

Now we can create an empty device and use a loop to add polygons to it according to our specifications.

D = Device()

for x in range(0, N_X):
 p0 = (x * P_X, 0)
 p1 = (x * P_X + W_X, 0)
 p2 = (x * P_X + W_X, W_Y)
 p3 = (x * P_X, W_Y)
 D.add_polygon([p0, p1, p2, p3])

That's it. We can plot our layout right away, which is a very useful troubleshooting step.

qp(D) # Plot device

https://phidl.readthedocs.io/en/latest/tutorials.html
https://phidl.readthedocs.io/en/latest/geometry_reference.html

Finally, we can save the layout to a file..gds

D.write_gds('grating')

Note that repeated structures can be also made by using GDSII references, as outline in the references section below.

Basic array

It is easy to modify the above example to have a two-dimensional array of identical structures.

from phidl import Device
from phidl import quickplot as qp

N_X = 10 # Number of structures along x
N_Y = 10 # Number of structures along y
P_X = 2 # Array period along x, um
P_Y = 2 # Array period along y, um
W_X = 1 # Structure dimension along x, um
W_Y = 1.5 # Structure dimension along y, um

D = Device()

for x in range(0, N_X):
 for y in range(0, N_Y):
 p0 = (x * P_X, y * P_Y)
 p1 = (x * P_X + W_X, y * P_Y)
 p2 = (x * P_X + W_X, y * P_Y + W_Y)
 p3 = (x * P_X, y * P_Y + W_Y)
 D.add_polygon([p0, p1, p2, p3])

qp(D) # Plot device

D.write_gds('array')

Because we define each vertex of our polygons, they needn't be rectangular, nor limited to four vertices, so the code above can easily be modified to make
arrays out of units with many different shapes. If the unit cell is made up of multiple separate shapes, more polygons can be added during each loop:

from phidl import Device
from phidl import quickplot as qp

N_X = 10 # Number of structures along x
N_Y = 10 # Number of structures along y
P_X = 2 # Array period along x, um
P_Y = 2 # Array period along y, um
W_X = 1 # Structure dimension along x, um
W_Y = 1.5 # Structure dimension along y, um

D = Device()

for x in range(0, N_X):
 for y in range(0, N_Y):
 p0 = (x * P_X, y * P_Y)
 p1 = (x * P_X + W_X, y * P_Y)
 p2 = (x * P_X + W_X, y * P_Y + W_Y)
 p3 = (x * P_X, y * P_Y + W_Y)
 D.add_polygon([p0, p1, p2, p3])

qp(D) # Plot device

D.write_gds('array')

Scaling arrays

It is often convenient to fabricate multiple versions of the same array in (slightly) different sizes, to account for fabrication deviations or mismatches
between numerical simulation and experiment. The basic array code from earlier can be modified to create multiple differently scaled arrays. Using a two-
dimensional list for the scale factors is a simple way to arrange the arrays in rows, which we do to save space.

from phidl import Device
from phidl import quickplot as qp

N_X = 10 # Number of structures along x
N_Y = 10 # Number of structures along y
P_X = 2 # Array period along x, um
P_Y = 2 # Array period along y, um
S_X = 30 # Separation between array origins along x, um
S_Y = 30 # Separation between array origins along y, um
W_X = 1 # Structure dimension along x, um
W_Y = 1.5 # Structure dimension along y, um

SF = [[0.8, 1.], [1.2]] # Scale factors by row of arrays

D = Device()

for x in range(0, N_X):
 for y in range(0, N_Y):
 for ri, r in enumerate(SF):
 for sfi, sf in enumerate(r):
 p0 = (sf * (x * P_X) + sfi * S_X,
 sf * (y * P_Y) + ri * S_Y)
 p1 = (sf * (x * P_X + W_X) + sfi * S_X,
 sf * (y * P_Y) + ri * S_Y)
 p2 = (sf * (x * P_X + W_X)+ sfi * S_X,
 sf * (y * P_Y + W_Y) + ri * S_Y)
 p3 = (sf * (x * P_X) + sfi * S_X,
 sf * (y * P_Y + W_Y) + ri * S_Y)
 D.add_polygon([p0, p1, p2, p3])

qp(D) # Plot device

D.write_gds('arrays')

When you fabricate a real device, in addition to having much larger arrays, you will probably use many more scale factors.

Labelling

Labelling is very important both for yourself, to aid in various fabrication and metrology steps, and for experimenters who characterize your device, to help
them find structures and make sure they are looking at the right one. In the case of the example above, we should at least label the various arrays so that
they are identified unambiguously, and add a sample label as well.

The labels we add here would be very small and difficult to read under low magnification. It is better if essential identifiers, such as row and column letters
and numbers, are a hundred or more microns tall: this will make them visible to the naked eye and readable with any microscope. When in doubt, go with
few letters (so that overall writing time is not increased excessively) and make them large.

Adding labels is easily done with from PHIDL's geometry library. The default font is suitable for lithography, but of course it will still be unreadable if text
the letters are too small for the fabrication process you're using.

After creating text, we will need to it to the right place, before adding it to the device with . More on references later. These command can move add_ref
be used with other geometry, too.

Starting from the same code as the previous section, we need to modify the imports to include the PHIDL geometry library:

from phidl import Device
from phidl import quickplot as qp
import phidl.geometry as pg

Then, we add the following code between the loop and the command to add a label for our device:for qp

Add device identifier

deviceTextStr = 'Arrays\nCNF 2023'
deviceText = pg.text(deviceTextStr, size = 4)
deviceText.move([-40, 0])
D.add_ref(deviceText)

Finally, we add code for column and row identifiers just below the previous snippet:

Add row and column labels

TEXT_SIZE = 6

colLabelOffset = -10
rowLabelOffset = -10
colStr = ['A', 'B']
rowStr = ['1', '2']

for ics, cs in enumerate(colStr):
 labelText = pg.text(cs, size = TEXT_SIZE)
 labelText.move([ics * S_X, colLabelOffset])
 D.add_ref(labelText)

for irs, rs in enumerate(rowStr):
 labelText = pg.text(rs, size = TEXT_SIZE)
 labelText.move([rowLabelOffset, irs * S_Y])
 D.add_ref(labelText)

Once again, in an actual device both arrays and labels would be much larger.

Note that we have added the labels without modifying the pattern's origin. If you want the origin somewhere else you must change the various position
shifts to account for it, or use as shown in the section below.move origin

Circles and arcs

The GDSII format does not support curves, which means that curved objects are polygons, too, albeit likely with large vertex counts. When working with
lots of vertices, remember not to exceed the target tool's limit.

Let's say our device made up of three rings, each defined by an inner and outer radius. Moreover, let's ask that our rings be approximated by polygons
with one vertex per degree, although this is far too much for the rings in this example. This means 2 × 360 vertices, which for example is much larger than
the 199 limit for the Heidelbergs. We can't use PHIDL's and must instead use four instances of . One possible way of doing so is below.ring arc

from phidl import Device
from phidl import quickplot as qp
import phidl.geometry as pg

ARC_START = [0, 90, 180, 270]
ARC_EXTENT = 90
DEG_PER_VERT = 1

R = [[10, 12],[14, 18],[22, 26]] # Inner and outer radius, um

D = Device()

for r in R:
 r0 = r[0]
 r1 = r[1]
 for a in ARC_START:
 arc = pg.arc(radius = (r1+r0)/2,
 width = (r1-r0),
 theta = ARC_EXTENT,
 start_angle = a,
 angle_resolution = DEG_PER_VERT)
 D.add_ref(arc)

Add device identifier

deviceTextStr = 'Rings\nCNF 2023'
deviceText = pg.text(deviceTextStr, size = 4)
deviceText.move([-40, -20])
D.add_ref(deviceText)

qp(D) # Plot device

D.write_gds('rings')

The objects marked "1" and "2" are ports, which are used by PHIDL's and are a possible alternative to the method in this example. Because each routing
ring is four arcs, although it should not be a problem here, a step is recommended in the job preparation software (it always is).healing

https://phidl.readthedocs.io/en/latest/tutorials/routing.html

Layers

Layers are a useful GDSII feature that is especially important in multistep processes. However, consider whether you do need multiple layers in the final
GDSII file, or you should be laying out the various steps side by side on the same layer instead (which is often more straightforward when making a
photomask).

PHIDL supports GDSII with extensive utilities to handle them. GDSII layers are defined by two integers between 0 and 255, the and layers layer number dat
. If the datatype is not specified, PHIDL sets it to 0.atype

Suppose we want to add another layer to our arrays device above. It could represent a second lithography step for the purpose of etching a multi-step
profile on the device. Keep in mind that, in an actual device, this would require alignment marks appropriate to the tool being used.

We must modify our import to

from phidl import Device, Layer

and define three layers with , etc. We then assign (somewhat arbitrarily) the text to layer 0, our previous structures to layer 1 and the layer0 = (0,0)
second-step structures to layer 2 by specifying the keyword when adding geometry.layer

from phidl import Device, Layer
from phidl import quickplot as qp
import phidl.geometry as pg

N_X = 10 # Number of structures along x
N_Y = 10 # Number of structures along y
P_X = 2 # Array period along x, um
P_Y = 2 # Array period along y, um
S_X = 30 # Separation between array origins along x, um
S_Y = 30 # Separation between array origins along y, um
W1_X = 1 # Structure dimension along x, um
W1_Y = 1.5 # Structure dimension along y, um
W2_X = 0.6 # Second layer structure dimension along x, um
W2_Y = 0.9 # Second layer structure dimension along y, um

SF = [[0.8, 1.], [1.2]] # Scale factors by row of arrays

D = Device()

layer0 = (0, 0)
layer1 = (1, 0)
layer2 = (2, 0)

wDiffX = (W1_X - W2_X) / 2
wDiffY = (W1_Y - W2_Y) / 2

for x in range(0, N_X):
 for y in range(0, N_Y):
 for ri, r in enumerate(SF):
 for sfi, sf in enumerate(r):
 for u, v, du, dv, l in zip([W1_X, W2_X], [W1_Y, W2_Y],
 [0, wDiffX], [0, wDiffY],
 [layer1, layer2]):
 p0 = (sf * (x * P_X + du) + sfi * S_X,
 sf * (y * P_Y + dv) + ri * S_Y)
 p1 = (sf * (x * P_X + du + u) + sfi * S_X,
 sf * (y * P_Y + dv) + ri * S_Y)
 p2 = (sf * (x * P_X + du + u)+ sfi * S_X,
 sf * (y * P_Y + dv + v) + ri * S_Y)
 p3 = (sf * (x * P_X + du) + sfi * S_X,
 sf * (y * P_Y + dv + v) + ri * S_Y)
 D.add_polygon([p0, p1, p2, p3], layer = l)

Add device identifier

deviceTextStr = 'Arrays\nCNF 2023'
deviceText = pg.text(deviceTextStr, size = 4, layer = layer0)
deviceText.move([-40, 0])
D.add_ref(deviceText)

https://phidl.readthedocs.io/en/latest/tutorials/layers.html

Add row and column labels

TEXT_SIZE = 6

colLabelOffset = -10
rowLabelOffset = -10
colStr = ['A', 'B']
rowStr = ['1', '2']

for ics, cs in enumerate(colStr):
 labelText = pg.text(cs, size = TEXT_SIZE)
 labelText.move([ics * S_X, colLabelOffset])
 D.add_ref(labelText)

for irs, rs in enumerate(rowStr):
 labelText = pg.text(rs, size = TEXT_SIZE)
 labelText.move([rowLabelOffset, irs * S_Y])
 D.add_ref(labelText)

qp(D) # Plot device

D.write_gds('arrays')

The three colors identify the three layers.

There's much more that PHIDL can do with layers, which could be useful if your device is particularly complex. When using many layers, keep a consistent
nomenclature across devices.

Using references

PHIDL can be used to access the inbuilt GDSII reference system. So far, we have been using just for adding text, but it is much more powerful. It add_ref
is very useful to create multiple identical shapes by reusing the same basic geometry rather than creating new geometry over and over again.

Let's take the example from the previous section and rewrite it using references. Additionally, instead of using a loop above to create arrays, let's for
make use of the inbuilt .add_array

from phidl import Device, Layer
from phidl import quickplot as qp

import phidl.geometry as pg

N_X = 10 # Number of structures along x
N_Y = 10 # Number of structures along y
P_X = 2 # Array period along x, um
P_Y = 2 # Array period along y, um
S_X = 30 # Separation between array origins along x, um
S_Y = 30 # Separation between array origins along y, um
W1_X = 1 # Structure dimension along x, um
W1_Y = 1.5 # Structure dimension along y, um
W2_X = 0.6 # Second layer structure dimension along x, um
W2_Y = 0.9 # Second layer structure dimension along y, um

SF = [[0.8, 1.], [1.2]] # Scale factors by row of arrays

D = Device()

layer0 = (0, 0)
layer1 = (1, 0)
layer2 = (2, 0)

wDiffX = (W1_X - W2_X) / 2
wDiffY = (W1_Y - W2_Y) / 2

for ri, r in enumerate(SF):
 for sfi, sf in enumerate(r):
 P1 = Device()
 P2 = Device()
 p0 = (0, 0)
 p1 = (sf * W1_X, 0)
 p2 = (sf * W1_X, sf * W1_Y)
 p3 = (0, sf * W1_Y)
 P1.add_polygon([p0, p1, p2, p3], layer = layer1)
 p0 = (0, 0)
 p1 = (sf * W2_X, 0)
 p2 = (sf * W2_X, sf * W2_Y)
 p3 = (0, sf * W2_Y)
 P2.add_polygon([p0, p1, p2, p3], layer = layer2)
 A1 = Device()
 A2 = Device()
 arrayPos = [sfi * S_X, ri * S_Y]
 layerOffset = [sf * wDiffX, sf * wDiffY]
 spacing = [sf * P_X, sf * P_Y]
 A1.add_array(P1, columns = N_X, rows = N_Y,
 spacing = spacing).move(arrayPos)
 A2.add_array(P2, columns = N_X, rows = N_Y,
 spacing = spacing).move(
 layerOffset).move(arrayPos)
 D.add_ref(A1)
 D.add_ref(A2)

Add device identifier

deviceTextStr = 'Arrays\nCNF 2023'
deviceText = pg.text(deviceTextStr, size = 4, layer = layer0)
deviceText.move([-40, 0])
D.add_ref(deviceText)

Add row and column labels

TEXT_SIZE = 6

colLabelOffset = -10
rowLabelOffset = -10
colStr = ['A', 'B']
rowStr = ['1', '2']

for ics, cs in enumerate(colStr):
 labelText = pg.text(cs, size = TEXT_SIZE)
 labelText.move([ics * S_X, colLabelOffset])
 D.add_ref(labelText)

for irs, rs in enumerate(rowStr):
 labelText = pg.text(rs, size = TEXT_SIZE)
 labelText.move([rowLabelOffset, irs * S_Y])
 D.add_ref(labelText)

qp(D) # Plot device

D.write_gds('arrays')

The code is actually longer in this instance, but probably easier to read.

Moving the origin

We have seen the command used to move objects and devices (PHIDL also includes) and one possible use case for move rotating, mirroring and more
moving your entire, final device is to change the GDSII origin.

D.move([-1000, -1000])

https://phidl.readthedocs.io/en/latest/tutorials/movement.html

(Note the axes scales.)

That said, job file preparation software for e-beam and photolithography (such as LayoutBEAMER, or that on the Heidelberg mask writers workstation) wll
let you move a pattern's origin wherever you need it.

Running on Korat and Minx
PHIDL and necessary packages have been installed on CNF's Korat and Minx servers, which are accessible from ThinLinc clients in the cleanroom, CAD
room or . Links to Korat and Minx terminals are found in the "Applications > CNF" menu. In either terminal, to the remotely through the Cornell VPN cd
folder containing your script file(s), e.g. , and type:filename.py

bash
export PYTHONPATH=/usr/local/phidl/lib64/python3.6/site-packages:/usr/local/phidl/lib/python3.6/site-
packages:$PYTHONPATH
ipython3 -i filename.py

If your code is structured like the examples above, a file will be saved, and a plot of your layout will be displayed..gds

Alternatives to PHIDL
Another CNF resource is , a Java GDSII library. Read the guide and the .JetStream Getting Started documentation

Tips and tricks
Follow these practices to make your own life, and that of whoever will characterize your device, much easier:

Be consistent with labels and nomenclature across devices and GDSII files.
Label structures and samples clearly, and make labels large enough for experimenters to see by eye and read with low magnification.
Include alignment marks if you require multiple exposures. These vary by tool and are not included in the PHIDL libraries. Download them from
each tool page in the and separately add them to your layout files using your GDSII editor of choice.CNF users' website
Include lithography test structures, especially when running exposure tests.

https://confluence.cornell.edu/display/CNF/Remote+Software+Access
https://confluence.cornell.edu/pages/viewpage.action?pageId=336378904
https://confluence.cornell.edu/download/attachments/336378904/JETStream.docx?version=2&modificationDate=1537306791000&api=v2
https://www2.cnfusers.cornell.edu/doc/JetStream/
https://www.cnfusers.cornell.edu/

	GDSII Scripting for Lithography

