FLUENT - Laminar Pipe Flow - Problem 2

Problem Specification

- 1. Pre-Analysis & Start-up
- 2. Geometry
- 3. Mesh
- 4. Setup (Physics)
- 5. Solution
- 6. Results
- 7. Verification & Validation

Problem 1

Problem 2

Site Under Construction

We are working on updating this part of the tutorial. Please come back soon.

Problem 2

Problem

On your finest mesh (100x20), rerun the *FLUENT* calculation for Reynolds numbers 200 and 500 using the "second-order upwind" scheme. Note: change the Reynolds number by adjusting the molecular viscosity μ . Plot the centerline velocity and skin friction as a function of axial distance for Re = 100 (previous problem), 200, and 500. Plot all three cases on the same graph for comparsion. Briefly explain the trend you observe as the Reynolds number increases.

Hints

If you've saved the 100x20 mesh in step 7, you can load it into FLUENT again without having to recreate it in GAMBIT.

Solve for μ for each of the Reynolds number first and then think about what steps need to be changed.

Solution

Your solution should look something like the plots below:

Centerline Velocity

Higher Resolution Image

Skin Coefficient

Higher Resolution Image

See and rate the complete Learning Module Go to all FLUENT Learning Modules