
 Deploy Services on AWS (Deprecated)

Contact info

Tan | ts864@cornell.edu

Overview
Currently, the way services are deployed is basically running their Docker containers on AWS EC2 instances. Within each container, a Flask service is
hosted using Gunicorn instead of native Flask to make the service more fault-tolerant.

Test and production environments for our mobile and dashboard services are deployed separately on the EC2 instances below.

Environment IP address Domain Port Sample
URL

Key pair file

Mobile (Online) Test 54.163.4.203 mobile-test.diaper-
project.com

(deprecated: on-test.diaper.
cf)

5001 https://mob
ile-test.
diaper-
project.
com:5001
/api
/monitoring

DIAPER confidential > AWS EC2 key files >
DIAPER-test-key

Box folder link

Dashboard (Offline) Test 54.243.201.107 dashboard-test.diaper-
project.com

5000 https://das
hboard-
test.diaper-
project.
com:5000
/env/

Mobile (Online) Production 35.168.248.57 mobile-prod.diaper-
project.com

(deprecated: on-prod.diaper.
cf)

5001 https://mob
ile-prod.
diaper-
project.
com:5001
/api
/monitoring

DIAPER confidential > AWS EC2 key files >
DIAPER-production-key

Box folder link

Dashboard (Offline) Production 3.228.124.129 dashboard-prod.diaper-
project.com

5000 https://das
hboard-
prod.
diaper-
project.
com:5000
/env/

Procedure
The procedure for deploying is the same for all environments. First, download the key pair file corresponding to the instance and run

chmod 400 /path/to/DIAPER-*-key.pem

Then, ssh into the corresponding EC2 instance using

ssh -i /path/to/DIAPER-*-key.pem ec2-user@<domain>

See if you're having troubleHow to ssh into AWS / BioHPC

Pull your Docker image and other relevant file from GitHub. and password, the username is , Instead of your own git account diapertestemail@gmail.com
and the password is the token in the login secrets.

Once pulled, navigate to the folder containing docker-compose files and run the corresponding command as explained below:

mailto:ts864@cornell.edu
https://mobile-test.diaper.cf:5001/api/monitoring
https://mobile-test.diaper.cf:5001/api/monitoring
https://mobile-test.diaper.cf:5001/api/monitoring
https://mobile-test.diaper.cf:5001/api/monitoring
https://mobile-test.diaper.cf:5001/api/monitoring
https://mobile-test.diaper.cf:5001/api/monitoring
https://mobile-test.diaper.cf:5001/api/monitoring
https://cornell.box.com/s/hqmsk2uhf2k7r7gx4z4kx0j7m3hnjoil
https://dashboard-test.diaper.cf:5000/env/
https://dashboard-test.diaper.cf:5000/env/
https://dashboard-test.diaper.cf:5000/env/
https://dashboard-test.diaper.cf:5000/env/
https://dashboard-test.diaper.cf:5000/env/
https://dashboard-test.diaper.cf:5000/env/
https://mobile-prod.diaper.cf:5001/api/monitoring
https://mobile-prod.diaper.cf:5001/api/monitoring
https://mobile-prod.diaper.cf:5001/api/monitoring
https://mobile-prod.diaper.cf:5001/api/monitoring
https://mobile-prod.diaper.cf:5001/api/monitoring
https://mobile-prod.diaper.cf:5001/api/monitoring
https://mobile-prod.diaper.cf:5001/api/monitoring
https://cornell.box.com/s/hqmsk2uhf2k7r7gx4z4kx0j7m3hnjoil
https://dashboard-prod.diaper.cf:5000/env/
https://dashboard-prod.diaper.cf:5000/env/
https://dashboard-prod.diaper.cf:5000/env/
https://dashboard-prod.diaper.cf:5000/env/
https://dashboard-prod.diaper.cf:5000/env/
https://dashboard-prod.diaper.cf:5000/env/
https://dashboard-prod.diaper.cf:5000/env/
https://confluence.cornell.edu/pages/viewpage.action?pageId=421824112&src=contextnavpagetreemode
mailto:diapertestemail@gmail.com

1.

// For test environments.
./deploy.sh -n "Your Name" -m "Reason for deployment" test

// For production environments.
./deploy.sh -n "Your Name" -m "Reason for deployment" prod

// For local development on your laptop.
// These two commands are equivalents (i.e. default is docker-compose.yml)
sudo docker-compose -f docker-compose.yml up -d --force-recreate
sudo docker-compose up -d --force-recreate

For test and production environments, make sure to fill your name and reason for deployment. All test and production deployments will be logged in deploy
mentHistory.log under the same directory.

The commands above run your container in detached mode so that your service doesn't block the console. However, once a container is run in detached
mode, all of its runtime errors will not be reported to the console. Thus, as the last step of deployment, you need to manually check that no runtime errors
occurred during the launching of your service by looking at its log using

sudo docker-compose logs -f

If there are no runtime errors, you will get an output similar to the one below.

Now you can log out and the service will continue running on the EC2 instance.

Troubleshooting

Server is down

Reboot the instance(shown below)

 2. If the problem persists, connect to the relevant server and run the deployment script:

// For test environments.
./deploy.sh -n "Your Name" -m "Reason for deployment" test

// For production environments.
./deploy.sh -n "Your Name" -m "Reason for deployment" prod

The particular issue may be highlighted during the execution of the above command.

BioHPC database timeout (Obsolete)

If you are experiencing timeout when connecting to the BioHPC database, it' probably because the EC2 instance isn't connected to Cornell's VPN. Check
whether the VPN is connected with

ps -A | grep openconnect

If the output is non-empty, then the VPN is connected. If not, you can connect to the VPN using

sudo openconnect -b cuvpn.cuvpn.cornell.edu --reconnect-timeout 600

and enter necessary information as prompted.

	❌ Deploy Services on AWS (Deprecated)

