ANSYS AIM Thermal Analysis of an Electrical Wire -Physics Setup

Author(s): Joshua Wallace & Steve Scampoli, ANSYS Inc.

Problem Specification

- 1. Pre-Analysis & Start-Up
- 2. Geometry
- 3. Physics Setup
- 4. Numerical Solution/Results
- 5. Verification & Validation

Physics Setup

Press the **Physics** tab in the workflow. Create a new material assignment by clicking on **Material Assignments**. Under **Material**, click on the drop down menu and create a new material called 'wire'. Then click on **wire** in order to provide material constants. Under **Default State** select **Solid** then **Add** > **Isotropic Thermal Conductivity** and value below. Follow the same process for adding **Isotropic Resistivity**.

wire	
Vp-to-date	
Description	
Enter a description.]
Default state	
Solid 👻	
✓ Solid Properties Add	
Isotropic thermal conductivity, k	
22.5 W m^-1 C^-1	
Isotropic resistivity	
9.3511E-08 ohm m	
Liquid Properties Add -	
Gas Properties Add -	
> Related Objects and Tasks	

Boundary Conditions / Forces

Next, the boundary conditions for the wire need to be created. Right click > Add > Electromagnetic Conditions> Current. Select on end of the wire and input a Current of 250 amps. Since the model of the wire is a one quarter symmetric model, one quarter of the total current will be entered for the current value.

Current 1	
Up-to-date	
Location	
1 face 💌 🛨	,≓
Current	
250 A	
Next St	ер 🛨
> Related Objects and Tasks	

Right click again > Electromagnetic Conditions > Voltage. Select the other end of the wire as the Location and input 0 V as the Voltage. The voltage condition allows the current to exit the current conduction model.

Voltage 1	
Up-to-date	
Location	
1 face 💌 +	
Voltage	
0 V •	
Next S	tep 🕶
> Related Objects and Tasks	

Right click again > Solid Thermal Conditions > Convection. Select the curved face as the location and input the Heat Transfer Coefficient and Convect ion Temperature as shown below in the image.

Convection 1
Vp-to-date
Location
1 face 💌 🛨 🛫
Heat transfer coefficient
28.391 W m^-2 C^-1
Convection temperature
21.111 C
Next Step 🗸
> Related Objects and Tasks

No boundary conditions are required on the symmetry surfaces as a symmetry boundary condition for electric conduction and heat transfer is a natural (unspecified) boundary condition. Now that the Boundary conditions are set, the results are ready to be calculated.

Go to Step 4: Numerical Solution/Results

Go to all ANSYS AIM Learning Modules