AIM Heat Conduction in Hollow Cylinder - Pre-Analysis

Author(s): Sebastian Vecchi, ANSYS Inc.

Problem Specification 1. Pre-Analysis & Start-Up 2. Geometry 3. Mesh 4. Physics Setup 5. Results

Pre-Analysis & Start-Up

Pre-Analysis

The governing equation for axisymmetric radial heat flow for a homogeneous cylinder with inner radius ri and outer radius ro is displayed below. Note that the following equation assumes that the cylinder is long enough for end effects to be ignored.

In the above equation k is the thermal conductivity, A is the surface area, T is the temperature, r is the radial position and Q is the heat generation per unit area.

For the given problem there is no heat generation, thus the governing equation can be solved easily. The solution for temperature as a function of radial position is displayed below.

A few words on the formatting on the following instructions:

- 1. Notes that require you to perform an action are colored in blue
- 2. General information will be colored in black, but do not require any action
- 3. Words that are **bolded** are labels for items found in ANSYS AIM
- 4. Most important notes will be colored in red

Start-Up

Now that we have the pre-calculations, we are ready begin simulating in ANSYS AIM. Open ANSYS AIM by going to Start > AII Apps > ANSYS 18.1 > AN SYS AIM 18.1. Once you are at the starting page of AIM select the Thermal template in the top right corner as shown below.

	?
ſ	Thermal: Physics
ľ	
	Additional physics:
	Structural
	Electric conduction
	Fluid flow
	Calculation type: Steady/static Time-dependent
	Options:
	Compute fatigue results
	Typical settings and results will be defined automatically.
	Back Finish

You will be prompted by the **Thermal Template** to either **Define new geometry, Import geometry file**, or **Connect to active CAD session**. Select **define new geometry** and press **Next**. For this problem we will be using a **Steady/static** calculation type so select it and press Finish. No addition physics are necessary. The Model Editor will launch automatically. In order to use the units given to us in the problem press the Home button in the top left corner and select **Units** > **U.S. Customary**.

	0
ß	Thermal: Physics
Addit	tional physics: Structural Electric conduction Fluid flow
Calc	ulation type: Steady/static Time-dependent
Optic	ons:] Compute fatigue results
Туріс	cal settings and results will be defined automatically. Back Finish

	?		
B Thermal: Physics			
Additional physics: Structural Electric conduction Fluid flow			
Calculation type: Steady/static Time-dependent			
Options:			
Typical settings and results will be defined automatic Back Finis	ally. h		

Go to Step 2: Geometry

Go to all ANSYS AIM Learning Modules