AIM Heat Conduction in a Bar - Pre-Analysis

Author(s): Sebastian Vecchi, ANSYS Inc

Problem Specification 1. Pre-Analysis & Start-Up 2. Geometry 3. Mesh 4. Physics Setup 5. Results

Pre-Analysis

Equations

The governing equation for heat transfer rate for a rectangular bar, as generalized by Fourier in 1807, is the following equation. In this equation, k is the proportionality factor as a function of material and temperature, A is the cross-sectional area and L is the length of the bar.

$$Q = kA \frac{(T_A - T_B)}{L} = -kA \frac{(T_A - T_B)}{L} = -kA \frac{dT}{dx}$$

The equation above can be written in terms of heat flux using the definition that heat flux is the amount of heat transfer per unit area. This one-dimensional form of Fourier's law of heat conduction is found below.

$$q' = -k \frac{dT}{dx}$$

A few words on the formatting on the following instructions:

- 1. Notes that require you to perform an action are colored in blue
- 2. General information will be colored in black, but do not require any action
- 3. Words that are **bolded** are labels for items found in ANSYS AIM
- 4. Most important notes will be colored in red

Start-Up

Now that we have the pre-calculations, we are ready begin simulating in ANSYS AIM. Open ANSYS AIM by going to Start > AII Apps > ANSYS 18.1 > AN SYS AIM 18.1. Once you are at the starting page of AIM, select the Thermal template as shown below.

(?)
Thermal: Physics	
	_
Additional physics:	
Structural	
Electric conduction	
Fluid flow	
Calculation type: Steady/static Time-dependent	
Options:	
Compute fatigue results	
Typical settings and results will be defined automatically.	
Back Finish	

You will be prompted by the Thermal template to either Define new geometry, Import geometry file, or Connect to active CAD session. Select Define new geometry and press Next.

0
Thermal: Physics
Additional physics:
Structural
Electric conduction
Fluid flow
Calculation type: Steady/static Time-dependent
Options:
Compute fatigue results
Typical settings and results will be defined automatically.
Back Finish

For this problem, we will be using the default Steady/static calculation type. Press Finish. No additional physics are necessary.

	?
Thermal: Physics	
	_
Additional physics:	
Structural	
Electric conduction	
Fluid flow	
Calculation type: Steady/static Time-dependent	
Options:	
Compute fatigue results	
Typical settings and results will be defined automatically Back Finish	y.

The Model Editor will launch automatically. In order to use the units given to us in the problem, press the Project button in the top left corner and select U nits > US Customary.

Go to Step 2: Geometry

Go to all ANSYS AIM Learning Modules