
1.
2.
3.

*nix Command Line Interface - Bootcamp Module

0: Introduction to the Shell
0.1: Structure of a Shell Command
0.2: Navigation in the Shell

0.2.1 Group Exploration
0.2.2: Exercise - Try Exploring on Your Own

1: Getting Help with Commands
1.1.1: Exercise - Find out about advanced ls commands

2: Working with files and folders
2.0 Tab for Auto-complete
2.1 Reading files
2.2: Canceling Commands
2.3 Moving around a Text File

3. History & Re-using commands
3.1: Command Reuse
3.2 History Command

4: Wildcards
4.1: More on wildcards
4.2: The wildcards and regular expressions

5: Moving, copying and deleting files
5.1: Moving (Renaming) Files
5.2: Copying a file
5.3: Renaming a directory
5.4: Moving a file into a directory

6: Using the echo command
6.1: Testing the echo Command
6.2 Why Care about the echo Command?

7. Deleting Files & Directories
1: Counting and mining data

1.1: Counting and sorting
1.2: CSV and TSV Files

1.2.1: wc, sort & >
1.2.2: Pipes

1.3: Pipes and Filters
1.3.1: Adding another pipe

1.4: Counting number of files, part I
1.5: Writing to files

1.5.1: Appending to a file
1.6: Counting the number of words

1.6.1 Exercise
1.7: Mining or searching
1.8: Strings

1.8.1: Introduction to grep
1.8.2: CSV results from grep
1.8.3: Whole words (-w) grep

1.9: Basic and extended regular expressions
1.10: Case sensitive search
1.11: Exercises
1.12: Finding unique values
1.13: Counting number of files, part II
Solution

Preface:

Download the sample data from . Move to the Desktop and unzip. here
Rename the directory to whatever you'd like for easier finding during the workshop.
Open up the appropriate Bash Shell for your OS (we'll walk through some options).

0: Introduction to the Shell
This section is largely taken from the Library Carpentry curriculum: Shell Lessons for Librarians.

In this session we will introduce programming by looking at how data can be manipulated, counted, and mined using the a command line Unix shell,
interface to your computer and the files to which it has access.

The shell is one of the most productive programming environments ever created. Its syntax may be cryptic, but people who have mastered it can
experiment with different commands interactively, then use what they have learned to automate their work. Command Line Interfaces like shells and tools
were the primary utilities for interaction with computer systems and programs until the introduction of the Graphical User Interfaces. For many tasks shell
and the command line can still excel GUI programs, however: particularly for process very large datasets and files.

A Unix shell is a command-line interpreter that provides a user interface for the Linux operating system and for Unix-like systems (such as Mac OS).

https://github.com/cmh2166/CUL-MWG-Workshop/archive/master.zip
https://data-lessons.github.io/library-shell/

For Windows users, popular shells such as Cygwin or Git Bash provide a Unix-like interface. This session will cover a small number of basic commands
using Git Bash for Windows users, Terminal for Mac OS. These commands constitute building blocks upon which more complex commands can be
constructed to fit your data or project.

What you can quickly learn is how to query lots of data for the information you want super fast. Using Bash or any other shell sometimes feels more like
programming than like using a mouse. Commands are terse (often only a couple of characters long), their names are frequently cryptic, and their output is
lines of text rather than something visual like a graph. On the other hand, with only a few keystrokes, the shell allows us to combine existing tools into
powerful pipelines and handle large volumes of data automatically. This automation not only makes us more productive, but also improves the
reproducibility of our workflows by allowing us to repeat them with few simple commands. Also, understanding the basics of the shell is very useful as a
foundation before learning to program, since most programming languages necessitate working with the shell.

0.1: Structure of a Shell Command

Let's start by opening the shell. This likely results in seeing a black window with a cursor flashing next to a dollar sign. This is our command line, and the i$
s the command prompt to show the system is ready for our input. The prompt can look somewhat different from system to system, but it usually ends with
a .$

The sign is used to indicate a command to be typed on the command prompt, but we never type the sign itself, just what follows after it.$ $

$ command --option(s) argument(s)
long options
$ ls --all ~/
short options
$ ls -a ~/

0.2: Navigation in the Shell

We will begin with the basics of navigating the Unix shell.

0.2.1 Group Exploration

When working in the shell, you are always in the computer's file system, in some folder (directory). We will therefore start by finding out where somewhere
we are by using the command, which you can use whenever you are unsure about where you are. It stands for "print working directory" and the result pwd
of the command is printed to your standard output, which is the terminal.

Let's type and hit enter to execute the command: pwd

$ pwd
/Users/Christina

The output will be a path to your home directory. Let's check if we recognize it by listing the contents of the directory. To do that, we use the command:ls

$ ls
Applications Downloads Music Public
__MACOSX perl5
Applications (Parallels) Dropbox Pictures Sites
marcedit test.json
Desktop Library Presentations Tools mashcat
Documents Movies Projects VirtualBox VMs nifi-0.7.0

We may want more information than just a list of files and directories. We can get this by specifying various (also known as options or switches) to go flags
with our basic commands. These are additions to a command that provide the computer with a bit more guidance of what sort of output or manipulation
you want.

If we type and hit enter, the computer returns a list of files that contains information similar to what we would find in our Finder (Mac) or Explorer ls -l
(Windows): the size of the files in bytes, the date it was created or last modified, and the file name.

$ ls -l
total 24
drwxr-xr-x 10 Christina staff 340 Jan 26 20:32 Applications
drwxr-xr-x@ 5 Christina staff 170 Jan 20 17:37 Applications (Parallels)
drwx------+ 4 Christina staff 136 Feb 3 10:46 Desktop
drwx------+ 39 Christina staff 1326 Feb 14 14:34 Documents
drwx------+ 88 Christina staff 2992 Feb 20 06:02 Downloads
drwx------@ 8 Christina staff 272 Feb 13 09:56 Dropbox
drwx------@ 73 Christina staff 2482 Jan 2 16:21 Library
drwx------+ 5 Christina staff 170 Dec 21 2015 Movies
drwx------+ 6 Christina staff 204 Mar 7 2016 Music
drwx------+ 1620 Christina staff 55080 Aug 17 2016 Pictures
drwxr-xr-x 7 Christina staff 238 May 29 2016 Presentations
drwxr-xr-x 44 Christina staff 1496 Feb 3 10:58 Projects
drwxr-xr-x+ 5 Christina staff 170 Dec 17 2015 Public
drwxr-xr-x 14 Christina staff 476 Feb 13 11:02 Sites
drwxr-xr-x@ 45 Christina staff 1530 Feb 7 17:06 Tools
drwx------ 7 Christina staff 238 Oct 12 11:21 VirtualBox VMs
drwxr-xr-x 4 Christina staff 136 Mar 1 2016 __MACOSX
drwxr-xr-x 18 Christina staff 612 Mar 7 2016 marcedit
drwxr-xr-x 3 Christina staff 102 Jan 26 2016 mashcat
drwxr-xr-x@ 20 Christina staff 680 Nov 8 11:20 nifi-0.7.0
drwxr-xr-x 6 Christina staff 204 Jun 6 2016 perl5
-rw-r--r-- 2 Christina staff 8232 Sep 30 12:05 test.json

In everyday usage we are more used to units of measurement like kilobytes, megabytes, and gigabytes. Luckily, there's another flag that when used -h
with the -l option, use unit suffixes: Byte, Kilobyte, Megabyte, Gigabyte, Terabyte and Petabyte in order to reduce the number of digits to three or less
using base 2 for sizes.

Now won't work on its own. When we want to combine two flags, we can just run them together. So, by typing and hitting enter we receive ls -h ls -lh
an output in a human-readable format (note: the order here doesn't matter).

$ ls -lh
total 24
drwxr-xr-x 10 Christina staff 340B Jan 26 20:32 Applications
drwxr-xr-x@ 5 Christina staff 170B Jan 20 17:37 Applications (Parallels)
drwx------+ 4 Christina staff 136B Feb 3 10:46 Desktop
drwx------+ 39 Christina staff 1.3K Feb 14 14:34 Documents
drwx------+ 88 Christina staff 2.9K Feb 20 06:02 Downloads
drwx------@ 8 Christina staff 272B Feb 13 09:56 Dropbox
drwx------@ 73 Christina staff 2.4K Jan 2 16:21 Library
drwx------+ 5 Christina staff 170B Dec 21 2015 Movies
drwx------+ 6 Christina staff 204B Mar 7 2016 Music
drwx------+ 1620 Christina staff 54K Aug 17 2016 Pictures
drwxr-xr-x 7 Christina staff 238B May 29 2016 Presentations
drwxr-xr-x 44 Christina staff 1.5K Feb 3 10:58 Projects
drwxr-xr-x+ 5 Christina staff 170B Dec 17 2015 Public
drwxr-xr-x 14 Christina staff 476B Feb 13 11:02 Sites
drwxr-xr-x@ 45 Christina staff 1.5K Feb 7 17:06 Tools
drwx------ 7 Christina staff 238B Oct 12 11:21 VirtualBox VMs
drwxr-xr-x 4 Christina staff 136B Mar 1 2016 __MACOSX
drwxr-xr-x 18 Christina staff 612B Mar 7 2016 marcedit
drwxr-xr-x 3 Christina staff 102B Jan 26 2016 mashcat
drwxr-xr-x@ 20 Christina staff 680B Nov 8 11:20 nifi-0.7.0
drwxr-xr-x 6 Christina staff 204B Jun 6 2016 perl5
-rw-r--r-- 2 Christina staff 8.0K Sep 30 12:05 test.json

We've now spent a great deal of time in our home directory. Let's go somewhere else. We can do that through the or Change Directory command:cd

(Note: On Windows and Mac, by default, the case of the file/directory doesn't matter. On Linux it does.)

$ cd Desktop

Notice that the command didn't output anything. This means that it was carried out successfully. Let's check by using :pwd

$ pwd
/Users/Christina/Desktop

If something had gone wrong, however, the command would have told you. Let's see by trying to move into a (hopefully) non-existing directory:

$ cd "Evil plan to destroy the world"
cd: The directory 'Evil plan to destroy the world' does not exist

Notice that we surrounded the name by quotation marks. The given to any shell command are separated by spaces, so a way to let them know arguments
that we mean 'one single thing called "Evil plan to destroy the world"', not 'six different things', is to use (single or double) quotation marks.

We've now seen how we can do 'down' through our directory structure (as in into more nested directories). If we want to go back, we can type . This cd ..
moves us 'up' one directory, putting us back where we started. If we ever get completely lost, the command without any arguments will bring us right cd
back to the home directory, right where we started.

To switch back and forth between two directories use: .cd ..

(Remember that if this cd command is special, there is no output in the terminal).

$ cd ..

0.2.2: Exercise - Try Exploring on Your Own

Take 5 minutes to move around the computer, get used to moving in and out of directories, see how different file types appear in the Unix shell. Be sure to
use the pwd and cd commands, and the different flags for the ls command you learned so far.

If you run Windows, also try typing

explorer .

to open Explorer for the current directory (the single dot means "current directory"). If you're on Mac or Linux, try

open .

instead. Being able to navigate the file system is very important for using the Unix shell effectively. As we become more comfortable, we can get very
quickly to the directory that we want.

1: Getting Help with Commands

Use the man command to invoke the manual page (documentation) for a shell command. For example,

1.
2.
3.
4.
5.

$ man ls
LS(1) BSD General Commands Manual LS(1)
NAME
 ls -- list directory contents
SYNOPSIS
 ls [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwx1] [file ...]
DESCRIPTION
 For each operand that names a file of a type other than directory, ls displays its name as well as any
requested, associated
 information. For each operand that names a file of type directory, ls displays the names of files
contained within that direc-
 tory, as well as any requested, associated information.
 If no operands are given, the contents of the current directory are displayed. If more than one operand
is given, non-directory
 operands are displayed first; directory and non-directory operands are sorted separately and in
lexicographical order.
 The following options are available:
 -@ Display extended attribute keys and sizes in long (-l) output.
 -1 (The numeric digit ``one''.) Force output to be one entry per line. This is the default when
output is not to a termi-
 nal.
 -A List all entries except for . and ... Always set for the super-user.
more text

displays all the flags/options available to you - which saves you remembering them all! Try this for each command you've learned so far. Use
the spacebar to navigate the manual pages, and q to quit this man output.

1.1.1: Exercise - Find out about advanced ls commands

Try to find out, using the man command:

How to list the files in a directory ordered by their filesize.
Try it out in different directories.
Can you combine it with the -l flag you learned before?
Afterwards, find out how you can order a list of files based on their last modification date.
Try ordering files in different directories.

To order files in a directory by their filesize, in combination with the -l flag:

ls -lS

Note that the S is case-sensitive!

To order files in a directory by their last modification date, in combination with the -l flag:

ls -lt

2: Working with files and folders

As well as navigating directories, we can interact with files on the command line: we can read them, open them, run them, and even edit them. In fact,
there's really no limit to what we do in the shell, but even experienced shell users still switch to graphical user interfaces (GUIs) for many tasks, such can
as editing formatted text documents (Word or OpenOffice), browsing the web, editing images, etc. But if we wanted to make the same crop on hundreds of
images, say, the pages of a scanned book, then we could automate the cropping using shell commands.

We will try a few basic ways to interact with files. Let's first move into the directory on your desktop (if you don't have this CUL-MWG-Workshop-master
directory, please ask for help).

Note: this command is for Mac and Linux users only. It does not work directly for Windows users. If you use windows, you can search for the
Shell command on , and view the associated manual page. You can also use the help switch --help after a command to http://man.he.net/
display the help documentation. e.g. ls --help

http://man.he.net/

$ cd
$ cd Desktop/CUL-MWG-Workshop-master
$ pwd
/Users/Christina/Desktop/CUL-MWG-Workshop-master

Here, we will create a new directory and move into it. Make the directory name 'firstdir':

$ mkdir firstdir
$ cd firstdir

Here we used the mkdir command (meaning 'make directories') to create a directory named 'firstdir'. Then we moved into that directory using
the cd command.

But wait! There's a trick to make things a bit quicker. Let's go up one directory.

$ cd ..

Instead of typing cd firstdir, let's try to type cd f and then hit the Tab key. We notice that the shell completes the line to cd firstdir/.

2.0 Tab for Auto-complete

Hitting tab at any time within the shell will prompt it to attempt to auto-complete the line based on the files or sub-directories in the current directory. Where
two or more files have the same characters, the auto-complete will only fill up to the first point of difference, after which we can add more characters, and
try using tab again. We would encourage using this method throughout today to see how it behaves (as it saves loads of time and effort!).

2.1 Reading files

If you are in firstdir, use to get back to the directory.cd .. CUL-MWG-Workshop-master

Here there are copies of two public domain books downloaded from along with other files we will cover later.Project Gutenberg

$ ls -lh
total 65408
-rw-r--r--@ 1 Christina staff 3.6M Feb 20 06:13 2014-01-31_JA-africa.tsv
-rw-r--r--@ 1 Christina staff 7.4M Feb 20 06:13 2014-01-31_JA-america.tsv
-rw-r--r--@ 1 Christina staff 1.4M Feb 20 06:13 2014-02-02_JA-britain.tsv
-rw-r--r--@ 1 Christina staff 13M Feb 20 06:13 2017-ecommons-CU-etds.csv
-rw-r--r--@ 1 Christina staff 5.0M Feb 20 06:13 2017-ecommons-CUL-community.csv
-rw-r--r--@ 1 Christina staff 582K Feb 20 06:13 33504-0.txt
-rw-r--r--@ 1 Christina staff 598K Feb 20 06:13 829-0.txt
-rw-r--r--@ 1 Christina staff 144K Feb 20 06:13 CUlecturetapes_metadata_ingest-ready.csv
-rw-r--r--@ 1 Christina staff 13B Feb 20 06:13 gallic.txt

The files and holds the content of book #829 and #33504 on Project Gutenberg. But we've forgot books, so we try the 829-0.txt 33504-0.txt which cat
 command to read the text of the first file:

https://www.gutenberg.org/

$ cat 829-0.txt

The terminal window erupts and the whole book cascades by (it is printed to your terminal). Great, but we can't really make any sense of that amount of
text.

2.2: Canceling Commands

To cancel this print of 829-0.txt, or indeed any ongoing processes in the Unix shell, hit Ctrl+C

2.3 Moving around a Text File

Often we just want a quick glimpse of the first or the last part of a file to get an idea about what the file is about. To let us do that, the Unix shell provides us
with the commands and .head tail

$ head 829-0.txt
The Project Gutenberg eBook, Gulliver's Travels, by Jonathan Swift

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org

This provides a view of the first ten lines, whereas provides a perspective on the last ten lines:tail 829-0.txt

$ tail 829-0.txt

Most people start at our Web site which has the main PG search facility:
 http://www.gutenberg.org
This Web site includes information about Project Gutenberg-tm,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.

If ten lines is not enough (or too much), we would check to see if there exists an option to specify the number of lines to get (there is: man head head -n
 will print 20 lines).20

Another way to navigate files is to view the contents one screen at a time. Type to see the first screen, to see the next less 829-0.txt spacebar
screen and so on, then to quit (return to the command prompt).q

$ less 829-0.txt

Like many other shell commands, the commands cat, head, tail and less can take any number of arguments (they can
work with any number of files). We will see how we can get the first lines of several files at once. To save some
typing, we introduce a very useful trick first.

3. History & Re-using commands

3.1: Command Reuse

On a blank command prompt, hit the up arrow key and notice that the previous command you typed appears before your cursor. We can continue pressing
the up arrow to cycle through your previous commands. The down arrow cycles back toward your most recent command. This is another important time-
saving function and something we'll use a lot.

Hit the up arrow until you get to the command. Add a space and then (Remember your friend Tab? Type followed by head 829-0.txt 33504-0.txt 3
Tab to get), to produce the following command:33504-0.txt

$ head 829-0.txt 33504-0.txt
==> 829-0.txt <==
The Project Gutenberg eBook, Gulliver's Travels, by Jonathan Swift

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org

==> 33504-0.txt <==
The Project Gutenberg EBook of Opticks, by Isaac Newton
This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org

Title: Opticks
 or, a Treatise of the Reflections, Refractions, Inflections,

3.2 History Command

Use the history command to see a list of all the commands you've entered during the current session. Use the space bar to navigate through pages, and q
to quit.

4: Wildcards

All good so far, but if we had of books, it would be tedious to enter all the filenames. Luckily the shell supports ! The (matches exactly one lots wildcards ?
character) and (matches zero or more characters) are probably familiar from library search systems. We can use the wildcard to write the above c* * head
ommand in a more compact way:

$ head *.txt

4.1: More on wildcards

Wildcards are a feature of the shell and will therefore work with command. The shell will expand wildcards to a list of files and/or directories before the any
command is executed, and the command will never see the wildcards. As an exception, if a wildcard expression does not match any file, Bash will pass the
expression as a parameter to the command as it is. For example typing results in an error message that there is no file called *.pdf.ls *.pdf

4.2: The wildcards and regular expressions

The ? wildcard matches one character. The * wildcard matches zero or more characters. If you attended the lesson on regular expressions, do you
remember how you would express that as regular expressions?

(Regular expressions are not a feature of the shell, but some commands support them, we'll get back to that.)

The ? wildcard matches the regular expression . (a dot)
The * wildcard matches the regular expression .*

5: Moving, copying and deleting files

5.1: Moving (Renaming) Files

We may also want to change the file name to something more descriptive. We can it to a new name by using the or move command, giving it the move mv
old name as the first argument and the new name as the second argument:

$ mv 829-0.txt gulliver.txt

This is equivalent to the 'rename file' function.

Afterwards, when we perform a command, we will see that it is now :ls gulliver.txt

$ ls
2014-01-31_JA-africa.tsv 2014-02-02_JA-britain.tsv gulliver.txt 2014-01-31_JA-america.tsv 33504-0.txt 2014-
01_JA.tsv

5.2: Copying a file

Instead of a file, you might want to a file (make a duplicate), for instance to make a backup before modifying a file using some script you're moving copy
not quite sure how works. Just like the command, the command takes two arguments: the old name and the new name.mv cp

How would you make a copy of the file called ? Try it!gulliver.txt gulliver-backup.txt

$ cp gulliver.txt gulliver-backup.txt

5.3: Renaming a directory

Renaming a directory works in the same way as renaming a file. Try using the command to rename the directory to .mv firstdir backup

$ mv firstdir backup

5.4: Moving a file into a directory

If the last argument you give to the mv command is a directory, not a file, the file given in the first argument will be moved to that directory. Try using
the mv command to move the file gulliver-backup.txt into the backupfolder.

mv gulliver-backup.txt backup

This would also work:

mv gulliver-backup.txt backup/gulliver-backup.txt

6: Using the echo command

6.1: Testing the echo Command

The echo command simply prints out a text you specify. Try it out: echo "Metadata scripting for the win!". Interesting, isn't it?

$ echo "Metadata scripting for the win!"
Metadata scripting for the win!

You can also specify a variable, for instance NAME= followed by your name. Then type echo "$NAME works at Cornell University Library". What happens?

$ NAME=christina
no response if this is successful
$ echo "$NAME works at Cornell University Library"
christina works at Cornell University Library

You can combine both text and normal shell commands using echo, for example the pwd command you have learned earlier today. You do this by
enclosing a shell command in $(and), for instance $(pwd). Now, try out the following:

$ echo "Finally, it is nice and sunny on" $(date).
Finally, it is nice and sunny on Mon Feb 15 07:04:43 EST 2017.

Note that the output of the datecommand is printed together with the text you specified. You can try the same with some of the other commands you have
learned so far.

6.2 Why Care about the echo Command?

You may think there is not much value in such a basic command like echo. However, from the moment you start writing automated shell scripts, it
becomes very useful. For instance, you often need to output text to the screen, such as the current status of a script.

Moreover, you just used a shell variable for the first time, which can be used to temporarily store information, that you can reuse later on. It will give many
opportunities from the moment you start writing automated scripts.

7. Deleting Files & Directories

Finally, onto deleting. We won't use it now, but if you do want to delete a file, for whatever reason, the command is , or remove.rm

Using wildcards, we can even delete lots of files. And adding the flag we can delete folders with all their content.-r

Unlike deleting from within our graphical user interface, there is warning, recycling bin from which you can get the files back and no other no no
!undo options For that reason, please be very careful with and extremely careful with .rm rm -r

1: Counting and mining data
Now that you know a little bit about navigating the shell, we will move onto learning how to count and mine data using a few of the standard shell
commands. While these commands are unlikely to revolutionize your work by themselves, they're very versatile and will add to your foundation for working
in the shell and for learning to code.

1.1: Counting and sorting

We will begin by counting the contents of files using the Unix shell. We can use the Unix shell to quickly generate counts from across files, something that
is tricky to achieve using the graphical user interfaces of standard office suites.

Let's start by navigating to the directory that contains our data using the command:cd

$ cd CUL-MWG-Workshop-master

Remember, if at any time you are not sure where you are in your directory structure, use the pwd command to find out:

$ pwd
/Users/Christina/Desktop/CUL-MWG-Workshop-master

And let's just check what files are in the directory and how large they are with ls -lh.

In this episode we'll focus on the tsv and csv datasets, that contains eCommons, workflow, and article metadata.

1.2: CSV and TSV Files

CSV (Comma-separated values) is a common plain text format for storing tabular data, where each record occupies one line and the values are separated
by commas. TSV (Tab-separated values) is just the same except that values are separated by tabs rather than commas. Confusingly, CSV is sometimes
used to refer to both CSV, TSV and variations of them. The simplicity of the formats make them great for exchange and archival. They are not bound to a
specific program (unlike Excel files, say, there is no program, just lots and lots of programs that support the format, including Excel by the way.), and CSV
you wouldn't have any problems opening a 40 year old file today if you came across one.

1.2.1: wc, sort & >

wc is the "word count" command: it counts the number of lines, words, bytes and characters in files. Since we love the wildcard operator, let's run the
command to get counts for all the files in the current directory (it takes a little time to complete):wc *.tsv .tsv

$ wc *.csv
 12012 1804072 13923125 2017-ecommons-CU-etds.csv
 13172 452320 5233591 2017-ecommons-CUL-community.csv
 238 15220 147314 CUlecturetapes_metadata_ingest-ready.csv
 25422 2271612 19304030 total
$ wc *.*sv
 13712 511261 3773660 2014-01-31_JA-africa.tsv
 27392 1049601 7731914 2014-01-31_JA-america.tsv
 5375 196999 1453418 2014-02-02_JA-britain.tsv
 12012 1804072 13923125 2017-ecommons-CU-etds.csv
 13172 452320 5233591 2017-ecommons-CUL-community.csv
 238 15220 147314 CUlecturetapes_metadata_ingest-ready.csv
 71901 4029473 32263022 total

The first three columns contains the number of lines, words and bytes (to show number characters you have to use a flag).

If we only have a handful of files to compare, it might be faster or more convenient to just check with Microsoft Excel, OpenRefine or your preferred text
editor, but when we have tens, hundreds or thousands of documents, the Unix shell has a clear speed advantage. The real power of the shell comes from
being able to combine commands and automate tasks, though. We will touch upon this slightly.

For now, we'll see how we can build a simple to find the shortest file in terms of number of lines. We start by adding the flag to get only the pipeline -l
number of lines, not the number of words and bytes:

$ wc -l *sv
 13712 2014-01-31_JA-africa.tsv
 27392 2014-01-31_JA-america.tsv
 5375 2014-02-02_JA-britain.tsv
 12012 2017-ecommons-CU-etds.csv
 13172 2017-ecommons-CUL-community.csv
 238 CUlecturetapes_metadata_ingest-ready.csv
 71901 total

The command itself doesn't have a flag to sort the output, but as we'll see, we can combine three different shell commands to get what we want.wc

First, we have the command. We will save the output from this command in a new file. To do that, we the output from the command wc -l *sv redirect
to a file using the ‘greater than’ sign (>), like so:

$ wc -l *sv > lengths.txt

There's no output now since the output went into the file , but we can check that the output indeed ended up in the file using or (orlengths.txt cat less
Notepad or any text editor).

$ cat lengths.txt
 13712 2014-01-31_JA-africa.tsv
 27392 2014-01-31_JA-america.tsv
 5375 2014-02-02_JA-britain.tsv
 12012 2017-ecommons-CU-etds.csv
 13172 2017-ecommons-CUL-community.csv
 238 CUlecturetapes_metadata_ingest-ready.csv
 71901 total

Next, there is the sort command. We'll use the -n flag to specify that we want numerical sorting, not lexical sorting, we output the results into yet another
file, and we use cat to check the results:

$ sort -n lengths.txt > sorted-lengths.txt
$ cat sorted-lengths.txt
 238 CUlecturetapes_metadata_ingest-ready.csv
 5375 2014-02-02_JA-britain.tsv
 12012 2017-ecommons-CU-etds.csv
 13172 2017-ecommons-CUL-community.csv
 13712 2014-01-31_JA-africa.tsv
 27392 2014-01-31_JA-america.tsv
 71901 total

1.2.2: Pipes

But we're really just interested in the end result, not the intermediate results now stored in and .lengths.txt sorted-lengths.txt

What if we could send the results from the first command () directly to the next command () and then the output from that command wc -l *sv sort -n
to ? Luckily we can, using a concept called . On the command line, you make a pipe with the vertical bar character |. Let's try with one head -n 1 pipes
pipe first:

$ wc -l *sv | sort -n
 238 CUlecturetapes_metadata_ingest-ready.csv
 5375 2014-02-02_JA-britain.tsv
 12012 2017-ecommons-CU-etds.csv
 13172 2017-ecommons-CUL-community.csv
 13712 2014-01-31_JA-africa.tsv
 27392 2014-01-31_JA-america.tsv
 71901 total

Notice that this is exactly the same output that ended up in our earlier. Let's add another pipe:sorted-lengths.txt

$ wc -l *sv | sort -n | head -n 1
238 CUlecturetapes_metadata_ingest-ready.csv

It can take some time to fully grasp pipes and use them efficiently, but it's a very powerful concept that you will find not only in the shell, but also in most
programming languages.

. Also see for more abbreviated Images taken from Library Carpentry: Counting and mining with the Shell http://jorol.de/2016-ELAG-Bootcamp/slides/#6
and technical introduction to working with pipes.

1.3: Pipes and Filters

This simple idea is why Unix has been so successful. Instead of creating enormous programs that try to do many different things, Unix programmers focus
on creating lots of simple tools that each do one job well, and that work well with each other.

This programming model is called “pipes and filters”. We’ve already seen ; a is a program like wc or sort that transforms a stream of input into a pipes filter
stream of output. Almost all of the standard Unix tools can work this way: unless told to do otherwise, they read from standard input, do something with
what they’ve read, and write to standard output.

The key is that any program that reads lines of text from standard input and writes lines of text to standard output can be combined with every other
program that behaves this way as well. You can and should write your programs this way so that you and other people can put those programs into pipes
to multiply their power.

1.3.1: Adding another pipe

We have our wc -l *sv | sort -n | head -n 1 pipeline. What would happen if you piped this into cat? Try it!

The cat command just outputs whatever it gets as input, so you get exactly the same output from

$ wc -l *sv | sort -n | head -n 1

and

$ wc -l *sv | sort -n | head -n 1 | cat

1.4: Counting number of files, part I

https://github.com/data-lessons/library-shell/blob/gh-pages/fig/redirects-and-pipes.png
https://data-lessons.github.io/library-shell/02-counting-mining/
http://jorol.de/2016-ELAG-Bootcamp/slides/#6

1.

2.
3.

Let's make a different pipeline. You want to find out how many files and directories there are in the current directory. Try to see if you can pipe the output
from into to find the answer, or something close to the answer.ls wc

You get close with

$ ls -l | wc -l

but the count will be one too high, since the "total" line from is included in the count. We'll get back to a way to fix that later when we've learned about ls
the command.grep

1.5: Writing to files

The command outputs the current date and time. Can you write the current date and time to a new file called ? Then check the date logfile.txt
contents of the file.

$ date > logfile.txt
$ cat logfile.txt

To check the contents, you could also use less or many other commands.

Beware that > will happily overwrite an existing file without warning you, so please be careful.

1.5.1: Appending to a file

While > writes to a file, >> appends something to a file. Try to append the current date and time to the file logfile.txt?

$ date >> logfile.txt
$ cat logfile.txt

1.6: Counting the number of words

1.6.1 Exercise

Check the manual for the wc command (either using man wc or wc --help) to see if you can find out what flag to use to print out the number of
 (but not the number of lines and bytes). words

Try it with the .csv files.
If you have time, you can also try to sort the results by piping it to sort. And/or explore the other flags of wc.

From man wc, you will see that there is a -w flag to print the number of words:

 -w The number of words in each input file is written to the standard
 output.

So to print the word counts of the .csv files:

$ wc -w *.csv

 1804072 2017-ecommons-CU-etds.csv
 452320 2017-ecommons-CUL-community.csv
 15220 CUlecturetapes_metadata_ingest-ready.csv
 2271612 total

And to sort the lines numerically:

$ wc -w *.csv | sort -n

 15220 CUlecturetapes_metadata_ingest-ready.csv
 452320 2017-ecommons-CUL-community.csv
 1804072 2017-ecommons-CU-etds.csv
 2271612 total

1.7: Mining or searching

Searching for something in one or more files is something we'll often need to do, so let's introduce a command for doing that: (short for grep global regular
). As the name suggests, it supports regular expressions and is therefore only limited by your imagination, the shape of your data, and - expression print

when working with thousands or millions of files - the processing power at your disposal.

To begin using , first navigate to the directory if not already there. Then create a new directory "results":grep CUL-MWG-Workshop-master

$ mkdir results

Now let's try our first search:

$ grep metadata *.csv

Remember that the shell will expand to a list of all the .csv files in the directory. will then search these for instances of the string "1999" and *.csv grep
print the matching rows.

1.8: Strings

A is a sequence of characters, or "a piece of text".string

1.8.1: Introduction to grep

Press the up arrow once in order to cycle back to your most recent action. Amend to and hit enter.grep metadata *.csv grep -c metadata *.csv

$ grep -c metadata *.csv
2017-ecommons-CU-etds.csv:3
2017-ecommons-CUL-community.csv:139
CUlecturetapes_metadata_ingest-ready.csv:0

The shell now prints the number of times the string metadata appeared in each file.

We will try another search:

$ grep -c 'Digital Archive' *.csv
2017-ecommons-CU-etds.csv:0
2017-ecommons-CUL-community.csv:3
CUlecturetapes_metadata_ingest-ready.csv:0

We got back the counts of the instances of the string within the files. Now, amend the above command to the below and observe 'application/pdf'
how the output of each is different:

$ grep -ci 'Digital Archive' *.csv
2017-ecommons-CU-etds.csv:0
2017-ecommons-CUL-community.csv:7
CUlecturetapes_metadata_ingest-ready.csv:0

This repeats the query, but prints a count (including instances of both and other variants).case insensitive digital archive Digital Archive and

As before, cycling back and adding , followed by a filename (ideally in .txt format), will save the results to a data file. Go ahead and do this on > results/
your own.

1.8.2: CSV results from grep

So far we have counted strings in file and printed to the shell or to file those counts. But the real power of comes in that you can also use it to create grep
subsets of tabulated data (or indeed any data) from one or multiple files.

$ grep -i metadata *.csv

This script looks in the defined files and prints any lines containing (without regard to case) to the shell.revolution

$ grep -i metadata *.csv > results/2017-02-15_metadata-ecommons.csv

This saves the subsetted data to file.

1.8.3: Whole words (-w) grep

Sometimes you need to capture the whole word only in that form (so revolution, but not revolutionary). The flag instructs to look for whole words -w grep
only, giving us greater precision in our search.

$ grep -iw revolution *.csv > results/DATE_JAiw-revolution.csv

This script looks in both of the defined files and exports any lines containing the whole word revolution (without regard to case) to the specified .csv file.

We can show the difference between the files we created.

$ wc -l results/*.csv
 186 results/2017-02-15_metadata-ecommons.csv
 162 results/DATE_JAiw-revolution.csv
 348 total

Finally, we'll use the covered earlier to search for similar words.regular expression syntax

1.9: Basic and extended regular expressions

There is unfortunately both . This is a common cause of confusion. Unless you want to remember the details, "basic" and "extended" regular expressions ju
 (-E flag) when doing something more complex than searching for a plain string.st always use extended regular expressions

The regular expression 'fr[ae]nc[eh]' will match "france", "french", but also "frence" and "franch". It's generally a good idea to enclose the expression in
single quotation marks, since that ensures the shell sends it directly to grep without any processing (such as trying to expand the wildcard operator *).

$ grep -iwE 'fr[ae]nc[eh]' *.csv

The shell will print out each matching line.

We include the flag to print only the matching part of the lines e.g. (handy for isolating/checking results):-o

$ grep -iwEo 'fr[ae]nc[eh]' *.csv

Pair up with your neighbor and work on these exercies:

1.10: Case sensitive search

https://www.gnu.org/software/grep/manual/html_node/Basic-vs-Extended.html

1.
2.
3.
4.
5.
6.

Search for all case sensitive instances of a word you choose in all four derived csv files in this directory. Print your results to the shell.

$ grep DCAPS *.csv

1.11: Exercises

Run some of the now-possible searches on the sample metadata. How can you combine it with the as well as the output options above? Such Regex stuff
as:

How do you run a search only on files that are from 2017 and a csv?
How do you count all case sensitive instances of a word you choose in select csv files?
How do you count all case insensitive instances of a word you choose in select csv files?
Search for all case insensitive instances of a select word in the csv files in this directory. Print your results to a new csv file.
Search for all case insensitive instances of a word in the csv files in this directory. Print your results to a new csv file.whole
Use regular expressions to find all ISSN numbers, unis, or other type identifiers with a regular structure in the csv files.

1.12: Finding unique values

If you pipe something to the uniq command, it will filter out duplicate lines and only return unique ones. Try piping the output from the command in the last
exercise to uniq and then to wc -l to count the number of unique ISSN values.

$ grep -Eo '\d{4}-\d{4}' 2014-01_JA.tsv | uniq | wc -l

1.13: Counting number of files, part II

In the earlier counting exercise in this lesson, we tried counting the number of files and directories in the current directory.

Recall that the command ls -l | wc -l took us quite far, but the result was one too high because it included the "total" line in the line count.
With the knowledge of grep, can you figure out how to exclude the "total" line from the ls -l output?
Hint: You want to exclude any line starting with the text "total". The hat character (^) is used in regular expressions to indicate the start of a line.

Solution

To find any lines starting with "total", we would use:

$ ls -l | grep -E '^total'

To *exclude those lines, we add the -v flag:

$ ls -l | grep -v -E '^total'

The grand finale is to pipe this into wc -l:

$ ls -l | grep -v -E '^total' | wc -l

https://confluence.cornell.edu/pages/viewpage.action?pageId=341934152

	*nix Command Line Interface - Bootcamp Module

