Computational Fluid Dynamics - Algebraic Equations

Author: Rajesh Bhaskaran, Cornell University

- 1. Introduction
- 2. Finite Volume Method
- 3. Discretization
- 4. Algebraic Equations
- 5. Linearization
- 6. Algorithm

4. Algebraic Equations

Deriving System of Algebraic Equations

Example: Deriving System of Algebraic Equations

Check Your Understanding

Consider the algebraic equation for mass conservation at the end of the above video. This equation is of the form: $Au_1+Bu_2+Cv_1+Dv_3=E$ where A,B,C,D,E are constant coefficients. From the explanation in the video, one can deduce that A=B=y/2. Denote the width of each cell in the x direction as x.

What is the value of C, the coefficient that multiples v_4 ?

Check Your Understanding

What is the value of the coefficient *E* in the equation in the previous question? Assume that that the inlet velocity is 1 *m*/s in the x direction.

Conservation is Built into FVM

Discretization: Overview

Go to Step 5. Linearization

Go to all (FLUENT) Learning Modules