Nabity System

UPDATES:

- Kathryn McGill (CNF Fellow)
- Walk-through

As of 10/19/16 (though truly from 2013-2014 during MoS2 work):

Chip Spinning:

- 1. spin 4% 495 @ 3000 rpm, 1000 ramp, 60 s (resist will be ~150 nm thick)
 - bake @ 170 °C for 15 min
- 2. spin 2% 950 @ 3000 rpm, 1000 ramp, 60 s (resist will be ~50 nm thick)
 - bake @ 170 °C for 15 min

(develop in 1:3 MIBK:IPA - see below - & lift-off in 1:1 methylene chloride:acetone)

E-beam Writing on the Nabity

- 1. Measure the current in pA for all apertures you are going to use (typically, 10 µm ap => 30-40 pA & 60 µm ap => ~1000+ pA)
- 2. Parameters common to all run files (including alignment):
 - a. gun @ 20 kV
 - b. 900 magnification
 - c. general params:
- Non-stop writing mode yes
 - Disable automated stage control no
 - Disable digital SEM control no
 - Disable x-y focus mode yes
 - Enable global rotation correction no
- 1. alignment windows:
 - counts of 15
 - center-to-center spacing 50 nm
 - line spacing of 50 nm
- 2. pattern writing of fine features:
 - 10 µm aperture (set in Supra system, not Nabity system)
 - continuous write
 - center-to-center spacing 5 nm
 - line spacing of 5 nm
 - 300 μC/cm² area dose
- 3. pattern writing of large features:
 - 60 µm aperture (set in Supra system, not Nabity system)
 - continuous write
 - center-to-center spacing 30 nm
 - line spacing of 30 nm
 - 500 µC/cm^2 area dose

*see screenshots below

Development

• 45 sec in 1:3 MIBK:IPA (shake chip back-and-forth in soln) & quench in IPA; N2 dry

Walk-through

step 1 - copy gds file into this directory:

step 2 - right click to convert gds to dc2:

step 2.1 - change drawing unit size to 1 and press convert:

step 3 - right click on new dc2 file and select DesignCAD Express:

step 3.1 - click NPGS - setdump

step 3.1.1 - the dump point is green:

step 3.2 - click NPGS - MaxMag:

step 3.3 - click NPGS - save - exit when done - then re-open to double check dump existence:

step 4 - right click on dc2 - choose run file editor:

step 4.1 - for fine contacts process 2 entities - set params as shown - pattern name is name of dc2 file:

step 4.2 - 1st entity is alignment - set params as shown - insert measured beam current in pA:

step 4.2.1 - skip all non alignment layers:

step 4.3 - 2nd entity for fine contacts - skip all alignment layers - change line to area dose:

step 4.3.1 - enter params as shown - same for each layer! - skip contact pad layer - remember to update measured current

step 4.4 - save run file - extension RF6 - and exit:

step 5 - find run file - right click - process run file:

step 5.1 - click continue - the writing will start!

step 6 - set up contact pad exposure - use these params:

step 6.1 - skip all but contact pad layer - enter params - remember to update measured current - proceed as before:

