AIM 3D Signpost - Pre-Analysis & Start-Up

Author: Madison Hill, ANSYS

Problem Specification 1. Pre-Analysis & Start-Up

2. Geometry

3. Mesh

- 4. Physics Setup
- 5. Numerical Results

Pre-Analysis & Start-Up

Pre-Analysis

This problem requires a relatively straightforward application of linearly superposed solutions from individual loadings. A simple spreadsheet can be prepared to give the results for the stresses associated with the separate loadings experienced by the signpost. An example is given here for the case of a solid post with a diameter of 1.12 feet:

	F25 🔻	(* <i>f</i> x	=H19*(E21	+C21)						
	А	В	С	D	E	F	G	Н	I.	J
1	Project 3: Designing	a steel sign	post							
2				Р						
3	Definitions			$\sigma_{axial} = \frac{P}{A}$						
4	P =	Axial load						2V		
5	V =	Lateral load	Ē.	_ 1	Mc	τ	n a x <i>lateral</i>	=		
6	M =	Bending mo	nent $\sigma_{\max \ b \text{ ending}} = \frac{Mc}{I}$ τ_{\max}			nax <i>lateral</i>	A			
7	T =	Torsion				16		To		
8	do =	External dia	External diameter $\sigma_{\text{max}} = \sigma_1 + \sigma_2 = \frac{P}{A} + \frac{Mc}{I}$ τ_{max} torsion $= \frac{Tc}{J}$							
9	di =	Internal dia	meter	$O_{\text{max}} = O_1 + O_1$	$A^2 - A^+$	I	nax torsion	J		
10	A =	Area	8		10-0-				_	
11	1=	Moment of	Moment of Inertia about the neutral axis							
12		Polar Mome								
13	c =	Centroid ref	erenced fro	om the extreme co	mpression fib	per (equal to o	outer radius)			
14	σ _{max} =	Normal stre	Normal stress produced by the combined effects of axial load and bending moment							
15	τ _{max} =	Shear stress	s produced l	by the lateral load						
16	100 (200).						wind x	wind y	weight sign	
17	Data	x1	z1	b2	h1	h2	Wx2	Fy1	Wz1	Unit Wt Steel
18	Units	ft	ft	ft	ft	ft	k/ft	k	k/ft	k/ft^3
19	Value	6	4	13	28	8	0.70	8.00	0.90	0.49
20	Units	in	in	in	in	in	k/in	n/a	k/in	k/in^3
21	Value	72	48	156	336	96	0.0583	n/a	0.0750	0.000284
22										
23	Reactions	Vx = Ax	Vy = A	y Vresult	P = Az	Mx	My	Mresult	T = Mz	
24	Units	kip	kip	kip	kip	kip*in	kip*in	kip*in	kip*in	
25	Value	-12.6	-8.00	14.93	29.08	3072	-4502	5450	-576	
26	-					4.44				
27	Property	do	di	wall thick	Α	Ix	L	c	Wt Post	
28	Units	in.	in.	in.	in. ²	in.4	in.4	in.	kip	
29	Value	13.44	0.00	6.720	141.87	1601.6	3203.3	6.720	17.38	
30	Value	10111	0.00	01720	141.07	1001.0	5205.5	0.720	17.00	-
					salara as					
31	Stress	σ _{axial}	obendin	max σ_z	Tlateral	T _{torsion}	max τ			
32	Units	ksi	ksi	ksi	ksi	ksi	ksi			
33	Value	0.20	22.87	23.07	0.21	1.21	1.42			
34	Allowable Stress			25.00			16.00			
35	1									

Note that the formula for the moment about the x-axis is highlighted and shown in the formula bar above the spreadsheet. Not surprisingly, the stresses are quite low as solid posts are almost never used in practice. You may wish to begin with this case of an over-designed signpost. The tutorial contains geometry files for both solid and hollow poles. Then you will want to consider hollow poles and compare results as you attempt to optimize the post's load-carrying capacity:

35								
36	RESULTS SUM	IMARY						
37								
38	Record your results (numbers, not formulae) below.							
39		d _o	d _i	t	$\max \sigma_z$	max τ	Weight of Post	
40		in.	in.	in.	ksi	ksi	kip	
41	Option 1							
42	Option 2							
43	Option 3							
44	Option 4							
45	Option 5 (Solid)	13.44	0.00	6.72	23.07	1.42	17.38	

You will want to continue and re-design lighter hollow posts which sustain higher stresses, but remain in the elastic regime.

Start-Up

Launch ANSYS AIM.

Go to Step 2: Geometry

Go to all ANSYS AIM Learning Modules